
This document is mostly printer-ready for 11x8.5 inch paper.
Right margin maximum is typically 79 characters, and the left
margin starts at 5. The formatting is mostly the same as the
printed manual. The OS/2 online version includes the tutorial
and many source example which are not included in the reference.
This document is updated as required.

BULLET (tm)

Copyright (C)1995 Cornel Huth All Rights Reserved.

7 September 1995

Notes

2

Bullet/2 API Reference

Table of Contents

Bullet Functions..5
INIT_XB .. 6
EXIT_XB ...7
ATEXIT_XB ...8
MEMORY_XB ...9
BACKUP_FILE_XB ...10
STAT_HANDLE_XB ...11
GET_ERROR_CLASS_XB ...12
QUERY_SYSVARS_XB ...14
SET_SYSVARS_XB ...17
SET_DVMON_XB ...21
CREATE_DATA_XB ...22
OPEN_DATA_XB ...26
CLOSE_DATA_XB ..28
STAT_DATA_XB ...29
READ_DATA_HEADER_XB ..31
FLUSH_DATA_HEADER_XB ...32
COPY_DATA_HEADER_XB ..33
ZAP_DATA_HEADER_XB ...34
CREATE_INDEX_XB ..35
OPEN_INDEX_XB ..41
CLOSE_INDEX_XB ...42
STAT_INDEX_XB ..43
READ_INDEX_HEADER_XB ...44
FLUSH_INDEX_HEADER_XB ..45
COPY_INDEX_HEADER_XB ...46
ZAP_INDEX_HEADER_XB ..47
GET_DESCRIPTOR_XB ..48
GET_RECORD_XB ..49
ADD_RECORD_XB ..50
UPDATE_RECORD_XB ...51
DELETE_RECORD_XB ...52
UNDELETE_RECORD_XB ...53
PACK_RECORDS_XB ..54
DEBUMP_RECORD_XB ...55
GET_MEMO_SIZE_XB ...56
GET_MEMO_XB ..58
ADD_MEMO_XB ..59
UPDATE_MEMO_XB ...60
DELETE_MEMO_XB ...62
MEMO_BYPASS_XB ...63
FIRST_KEY_XB ...65
EQUAL_KEY_XB ...66
NEXT_KEY_XB ..67
PREV_KEY_XB ..68
LAST_KEY_XB ..69
STORE_KEY_XB ...70
DELETE_KEY_XB ..71
BUILD_KEY_XB ...72
GET_CURRENT_KEY_XB ...73

3

Table of Contents Continued

GET_KEY_FOR_RECORD_XB ..74
GET_FIRST_XB ...75
GET_EQUAL_XB ...76
GET_NEXT_XB ..77
GET_PREV_XB ..78
GET_LAST_XB ..79
INSERT_XB ..80
UPDATE_XB ..88
REINDEX_XB ...95
LOCK_XB ..97
UNLOCK_XB ..99
LOCK_INDEX_XB ...100
UNLOCK_INDEX_XB ...101
LOCK_DATA_XB ..102
UNLOCK_DATA_XB ..103
CHECK_REMOTE_XB ...104
RELOCK_XB ...105
RELOCK_INDEX_XB ...106
RELOCK_DATA_XB ..107
DELETE_FILE_DOS ...108
RENAME_FILE_DOS ...109
CREATE_FILE_DOS ...110
ACCESS_FILE_DOS ...111
OPEN_FILE_DOS ...112
SEEK_FILE_DOS ...113
READ_FILE_DOS ...114
EXPAND_FILE_DOS ...115
WRITE_FILE_DOS ..116
CLOSE_FILE_DOS ..117
MAKE_DIR_DOS ..118
COMMIT_FILE_DOS ...119

Bullet Error Codes..120

SPECIFICATIONS..126
OS/2 API Calls Made ...127
Bullet Memory Usage ...128
IX3 File Format ...130
DBF File Format ...132
DBT File Format ...134
Custom Sort-Compare Function ..135
Custom Build-Key ..137
Custom Expression Parser ..139

License Agreement...143

Installation..145

Product Support...146
Bug Report Form ...147

4

Bullet/2 API Reference

Bullet Functions

Top Notes

Access-Sharing-Cache Mode

Access-Mode (required)
READONLY 0x00000000 read-only access open
WRITEONLY 0x00000001 write-only access open
READWRITE 0x00000002 read/write access open

Share-Mode (required)
DENYREADWRITE 0x00000010 no other process may share file
DENYWRITE 0x00000020 no other process may share file for write
DENYREAD 0x00000030 no other process may share file for read
DENYNONE 0x00000040 any process may share file

Inherit
NOINHERIT 0x00000080 child process does not inherit file handles

Cache
NO_LOCALITY 0x00000000 locality is not known
SEQ_LOCALITY 0x00010000 access will be mainly sequential
RND_LOCALITY 0x00020000 access will be mainly random
MIX_LOCALITY 0x00030000 access will be random with some sequential
SKIP_CACHE 0x00100000 I/O is not to go through the cache
WRITE_THROUGH 0x00400000 control returns only after disk is written to

Access- and Share-Mode values not explicitly listed are not valid. The
file access mode is a combination of ACCESS + SHARE + INHERIT + CACHE.
Typical data and index asMode is 0x00000042, though locality may be set
accordingly (e.g., 0x00020042 for mostly random access to the file).

The Cache mode options are valid for OPEN_DATA_XB and OPEN_INDEX_XB only;
for DOS_FILE_OPEN, the Cache values must be right-shifted by 8. The 'Skip
Cache' and 'Write Through' options are not inherited.

Enumerator

The enumerator is a big-endian 16-bit value that serves to differentiate up
to 65536 "identical", non-unique keys. It is attached to all keys of
DUPS_ALLOWED-flagged index files (set at CREATE_INDEX_XB), and occupies the
last two bytes of the key. The first key of the type uses \0\0, the second
uses \0\1, and so on. This ordering of bytes is the reverse of x86 Intel
words, which uses little-endian format.

High-values

HIGH-VALUES signify a sort order so that the value is the highest possible
(sorts last). HIGH-VALUES for a character key would be 0xFF for each byte,
or the 256th byte of the collate-sequence table if an NLS sort (which is
0xFF also). For 16-bit signed integer values, 0x7FFF is the highest. And
so on...

5

System Level

INIT_XB

Uses INITPACK

IN OUT
IP.func IP.stat
IP.JFTsize IP.versionDOS

IP.versionBullet
IP.versionOS
IP.exitPtr

This must be the first routine called. If it has already been called the
system variables are restored to their defaults, and an error is returned.
Otherwise, the entire Bullet system is initialized, and EXIT_XB is
registered with the OS ExitList handler (DosExitList).

For more than the default open files (generally 20), set IP.JFTsize to the
total number of concurrently open files you need. Depending on your
version, Bullet manages up to 1024 Bullet files per process (total data and
index; memo files are not counted against this total). Setting this less
than 20 does nothing. This number is for Bullet files, your files, pipes -
- anything using a handle. If you need to account for handles that you are
managing, you should add those to IP.JFTsize. For example, if you need 10
data files, each with a memo file, and 2 index files per data file, that is
40 total Bullet files. If you need to use 15 other handles, for whatever
use, add that number to the 40 Bullet files, for a total setting of 55.
The OS also uses 3 handles for itself, so, for all these, IP.JFTsize=58
would be the minimum. You can set it higher, but unused handles are wasted
handles.

On return (where no error occurred), the operating system version is in
IP.versionDOS (*100) and the Bullet version (*1000) in IP.versionBullet.
IP.versionOS return is based on the following table:

Bullet Platform IP.versionOS
MS-DOS 16-bit 0
Win3x 16-bit 1
DOSX 32-bit 3
OS/2 32-bit 4
WinNT/Win9x 32-bit 5

Not all platforms may be currently available.

IP.exitPtr returns with the function pointer to the EXIT_XB routine. This
function pointer is redundant unless specifically mentioned as being
required for your platform. It is not needed in OS/2.

Note: References under OUT using *AP.keyPtr or similar (note the *) are
used throughout this manual and indicate that Bullet updates the contents
at AP.keyPtr with data (i.e., Bullet filled the buffer).

6

Bullet/2 API Reference

EXIT_XB

Uses EXITPACK

IN OUT
EP.func EP.stat

Call EXIT_XB before ending your program to release any remaining resources
back to the OS. Open files should be closed by using CLOSE_DATA_XB and
CLOSE_INDEX_XB. EXIT_XB closes any Bullet files that are still open.

This routine is registered with the operating system and so is called auto-
matically when your program terminates, except for DOSX (see ATEXIT_XB).

7

System Level

ATEXIT_XB

Uses EXITPACK

IN OUT
EP.func EP.stat

This routine is obsolete. In OS/2, the EXIT_XB shutdown procedure is
registered with the operating system. For those systems that do not
offer this feature in the OS, the compiler run-time routine atexit()
is used immediately after calling INIT_XB, using IP.exitPtr as the
function pointer for atexit().

8

Bullet/2 API Reference

MEMORY_XB

Uses MEMORYPACK

IN OUT
MP.func MP.stat

MP.memory

Returns the largest memory block of unused physical memory.

OS/2 uses virtual memory. Therefore, returning the amount of 'free' memory
is not indicative of anything useful, other than the amount of memory being
unused, or actually, wasted. Wasted because it is always better for that
memory to be used for something, than for it to 'stand by' just waiting to
be used.

Future versions may return a more useful value.

Note: This routine is not mutex-protected.

9

System Level

BACKUP_FILE_XB

Uses COPYPACK

IN OUT
CP.func CP.stat
CP.handle
CP.filenamePtr

Copy an open BULLET index or data file. BULLET repacks and reindexes files
in place, requiring less disk space to perform the function. This routine
allows a file to be safely copied for a possible later restore.

This function is recommended prior to packing a data file with
PACK_RECORDS_XB. For index files, COPY_INDEX_HEADER_XB is sufficient since
index files are easily recreated so long as you have the data file along
with the index file header.

A full-lock should be in force before copying. A shared lock may be used.

Bullet does not backup memo files since memo files are not packed or
reindexed. To backup a memo file that is not open, use the following OS/2
API call:

rc = DosCopy(pszSourceName,pszDestName,0); /* proto in OS2.H */

Note: The source file for DosCopy must not be open or a sharing violation
is returned.

10

Bullet/2 API Reference

STAT_HANDLE_XB

Uses STATHANDLEPACK

IN OUT
SHP.func SHP.stat
SHP.handle SHP.ID

Get information on a file handle number to determine if it is a BULLET
file, and if so, its type: index or data.

SHP.ID File type
0 index, IX3 use STAT_INDEX_XB for file stats
1 data, DBF use STAT_DATA_XB for file stats

-1 unknown

Only bit0 of SHP.ID is significant if not -1. So, if bit0=0 then the
handle belongs to an index file. If bit0=1 then it's a data file.

Memo file handles return as unknown. A DBF file's memo file handle is
stored in the DBF file's data area, and is returned by STAT_DATA_XB in
SDP.memoHandle.

Note: This routine is not mutex-protected.

11

System Level

GET_ERROR_CLASS_XB

Uses XERRORPACK

IN OUT
XEP.func XEP.errClass
XEP.stat XEP.action

XEP.location

Get the extended error information for the code passed in XEP.stat. This
information includes the error classification, recommended action, and
origin of the error.

Any system error code can be specified, not necessarily the one that last
occurred. If a return code is not a BULLET code, then it is a system error
code (from the CP, DosXXX routines).

The ERRCLASS, ERRACT, and ERRLOC items below are OS/2 values, names and
descriptions for DosErrClass().

Error Classification
Value Name Description

1 ERRCLASS_OUTRES Out of resources
2 ERRCLASS_TEMPSIT Temporary situation
3 ERRCLASS_AUTH Authorization failed
4 ERRCLASS_INTRN Internal error
5 ERRCLASS_HRDFAIL Device hardware failure
6 ERRCLASS_SYSFAIL System failure
7 ERRCLASS_APPEAR Probably application error
8 ERRCLASS_NOTFND Item not located
9 ERRCLASS_BADFMT Bad format for function or data
10 ERRCLASS_LOCKED Resource or data locked
11 ERRCLASS_MEDIA Incorrect media, CRC error
12 ERRCLASS_ALREADY Action already taken, or resource exists
13 ERRCLASS_UNK Unclassified
14 ERRCLASS_CANT Cannot perform requested action
15 ERRCLASS_TIME Timeout

Recommended Action
Value Name Description

1 ERRACT_RETRY Retry immediately
2 ERRACT_DLYRET Delay and retry
3 ERRACT_USER Bad user input - get new values
4 ERRACT_ABORT Terminate in an orderly manner
5 ERRACT_PANIC Terminate immediately
6 ERRACT_IGNORE Ignore error
7 ERRACT_INTRET Retry after user intervention

12

Bullet/2 API Reference

Origin
Value Name Description

1 ERRLOC_UNK Unknown
2 ERRLOC_DISK Disk
3 ERRLOC_NET Network
4 ERRLOC_SERDEV Serial device
5 ERRLOC_MEM Memory

Note: This routine is not mutex-protected.

13

System Level

QUERY_SYSVARS_XB

Uses QUERYSETPACK

IN OUT
QSP.func QSP.stat
QSP.item QSP.itemValue

Query a BULLET system variable.

To get the function pointers to the sort compare functions, use:

QSP.item FuncPtr To
1 ASCII sort compare
2 NLS sort compare
3 16-bit signed integer
4 16-bit unsigned integer
5 32-bit signed integer
6 32-bit unsigned integer
7-9 Reserved

All intrinsic sort compares (1-6) point to the same function. They cannot
be called except by BULLET itself. The integer compare routines are based
on Intel byte order. For Motorola byte order, ASCII sort can be used for
all-positive numbers, otherwise a custom sort-compare should be used.

10-19 Custom sort-compare functions

Before creating or opening an index file with a custom sort-compare
function (which is specified during CREATE_INDEX_XB), that function's
address must first be sent to BULLET using SET_SYSVARS_XB. Thereafter,
that function must be available whenever that index file is accessed. See
Custom Sort-Compare Function for creating custom sort-compare functions.

To get the function pointers to the build key and expression parser
routines, use:

QSP.item FuncPtr To
20 Build key routine
21 Key expression parser routine
22-28 Reserved

Before creating or opening an index file with a custom build-key or
expression parser routine (which is specified at any time, but must be used
in a consistent manner), that routine's address must first be sent to
BULLET using SET_SYSVARS_XB. Thereafter, that routine should be available
since it may be required again. See Custom Build-Key Routine for creating
a custom build-key routine and Custom Expression Parser Routine for
creating a custom key expression parser.

To get the BULLET system variables' values, use:

QSP.item Value To
29 (read-only) BULLET mutual-exclusion (mutex) semaphore handle

14

Bullet/2 API Reference

30 Lock file region timeout, in milliseconds (default=0)
31 Mutex semaphore request timeout, in milliseconds (default=0)
32 Pack buffer size, in bytes (default=0: autosize)
33 Reindex buffer size, in bytes (default=0: autosize)
34 Reindex node pack percentage, 50-100% (default=100)
35 Temporary file path pointer (default=NULL, where TMP= used, then .\)
36 Reindex tag field character to skip (default=0, no skip)
37 Commit each file during INSERT/UPDATE_XB (default=0, defer to flush)
38 Memo file block size (default=512 bytes; minimum is 24 bytes)
39 Memo file extension (default is 'DBT\0')
40 Max data file size-1 (default=2047MB, absolute max is 4095MB)
41 Max index file size-1 (default=2047MB, absolute max is 4095MB)

The timeout values determine if the kernel should wait for a pre-determined
time before returning an error if the resource cannot be obtained. The
lock timeout specifies how long to wait for a lock to be obtained in case
some other process has a lock on the same resource. The mutex timeout
specifies how long to wait for access to BULLET in case some other thread
in this process is in BULLET. Multiple processes can access BULLET at the
same time, but only one thread in each process can be inside BULLET at any
one time.

The buffer sizes, when 0, default to a minimum reasonable size.
Performance is acceptable at these sizes. For best performance, provide as
much real memory as possible, up to 512KB. Larger buffers can be used.

The reindex node pack percentage determines how many keys are packed on a
node. 100% forces as many keys as possible, minus 1.

If the temporary file path pointer is NULL (the default), then the TMP=
environment variable is used to locate any temporary files created by
BULLET, or if that is not found, then the current directory is used. The
pointer supplied, if any, should be to a string containing an existing path
(drive should be included; a trailing '\' is optional, but recommended).
See REINDEX_XB for size requirements.

The reindex skip tag character, if encountered in the DBF record's tag
field (the first byte of each record), causes the reindex routine to not
place that record's key value into the index file. Also, BUILD_KEY_XB
returns a warning if the record supplied has a matching tag character. To
disable skip tag processing, set it to 0.

Inserts and Updates, by default, do not commit each file when that pack is
processed. Instead, it is left to the programmer to issue a FLUSH_XB to
commit. To force a commit after each pack file is processed, set
CommitAtEach to 1. This is not one single commit, but a commit for each
file in the pack, after that file has been processed, but before the next
file in the pack is. This will not prevent a roll-back should it be
needed.

A memo file can have at most 589,822 blocks. At the default 512 bytes per
block, that equates to about 288MB. If you need more memo space, increase
the block size. The memo extension default is 'DBT\0'. Generally, it's a
good idea to leave it at this.

15

System Level

The maximum file sizes are enforced when adding to or reading from DBF
files, and when inserting into or reading from index files. The default
is 2047 MB (0x7FEFFFFF). If your file system permits 4GB files, set the
values to 4095 MB (0xFFEFFFFF).

Note: This routine is not mutex-protected.

16

Bullet/2 API Reference

SET_SYSVARS_XB

Uses QUERYSETPACK

IN OUT
QSP.func QSP.stat
QSP.item QSP.itemValue
QSP.itemValue

Set a BULLET system variable, returning the previous value.

To use, set QSP.item to the item to set, and QSP.itemValue with the value
to use (function's address, variable's timeout value, etc., whatever the
case may be). On return, QSP.itemValue is the previous value that QSP.item
was set to.

QSP.item FuncPtr To
1 ASCII sort compare
2 NLS sort compare
3 16-bit signed integer
4 16-bit unsigned integer
5 32-bit signed integer
6 32-bit unsigned integer
7-9 reserved

All intrinsic sort compares (1-6) point to the same function. They cannot
be called except by BULLET itself. They should not be overloaded with
custom functions. If you have a custom sort-compare, use one of the custom
slots. The integer compare routines are based on Intel byte order. For
Motorola byte order, ASCII sort can be used for all-positive numbers,
otherwise a custom sort-compare should be used.

10-19 Custom sort-compare functions

Before creating or opening an index file with a custom sort-compare
function (which is specified during CREATE_INDEX_XB), that function's
address must first be sent to BULLET using this routine. Thereafter, that
function must be available whenever that index file is accessed. See
Custom Sort-Compare Function for creating custom sort-compare functions.

To set the function pointers to the build key and expression parser
routines, use:

QSP.item FuncPtr To
20 Build key routine
21 Key expression parser routine
22-28 Reserved

Before creating or opening an index file with a custom build key or
expression parser routine (which is specified at any time, but must be used
in a consistent manner), that routine's address must first be sent to
BULLET using this routine. Thereafter, that routine should always be ready
(in a callable state) since it may be required again. See Custom Build-Key

17

System Level

Routine for creating a custom build-key routine and Custom Expression
Parser Routine for creating a custom key expression parser.

18

Bullet/2 API Reference

To set the BULLET system variables' values, use:

QSP.item Value To
30 Lock file region timeout, in milliseconds (default=0)
31 Mutex semaphore request timeout, in milliseconds (default=0)
32 Pack buffer size, in bytes (default=0: autosize)
33 Reindex buffer size, in bytes (default=0: autosize)
34 Reindex node pack percentage, 50-100% (default=100)
35 Temporary file path pointer (default=NULL, where TMP= used, then .\)
36 Reindex tag field character to skip (default=0, no skip)
37 Commit each file during INSERT/UPDATE_XB (default=0, defer to flush)
38 Memo file block size (default=512 bytes; min is 24 bytes)
39 Memo file extension (default is 'DBT\0')
40 Max data file size-1 (default=2047MB, absolute max is 4095MB)
41 Max index file size-1 (default=2047MB, absolute max is 4095MB)

The timeout values determine if the kernel should wait for a pre-determined
time before returning an error if the resource cannot be obtained. The
lock timeout specifies how long to wait for a lock to be obtained in case
some other process has a lock on the same resource. The mutex timeout
specifies how long to wait for access to BULLET in case some other thread
in this process is in BULLET. Multiple processes can access BULLET at the
same time, but only one thread in each process can be inside BULLET at any
one time.

The buffer sizes, when 0, default to a minimum reasonable size.
Performance is acceptable at these sizes. For best performance, provide as
much real memory as possible, up to 512KB. Larger buffers can be used.

The reindex node pack percentage determines how many keys are packed on a
node. 100% forces as many keys as possible, minus 1.

If the temporary file path pointer is NULL (the default), then the TMP=
environment variable is used to locate any temporary files created by
BULLET, or if that is not found, then the current directory is used. The
pointer supplied, if any, should be to a string containing an existing path
(drive should be included; a trailing '\' is optional, but recommended).
See REINDEX_XB for size requirements.

The reindex skip tag character, if encountered in the DBF record's tag
field (the first byte of each record), causes the reindex routine to not
place that record's key value into the index file. Also, BUILD_KEY_XB
returns a warning if the record supplied has a matching tag character. To
disable skip tag processing, set it to 0.

Inserts and Updates, by default, do not commit each file when that pack is
processed. Instead, it is left to the programmer to issue a FLUSH_XB to
commit. To force a commit after each pack file is processed, set
CommitAtEach to 1. This is not one single commit, but a commit for each
file in the pack, after that file has been processed, but before the next
file in the pack is. This will not prevent a roll-back should it be
needed.

19

System Level

A memo file can have at most 589,822 blocks. At the default 512 bytes per
block, that equates to about 288MB. If you need more memo space, increase
the block size. The memo extension default is 'DBT\0'. Generally, it's a
good idea to leave it at this.

The maximum file sizes are enforced when adding to or reading from DBF
files, and when inserting into or reading from index files. The default
is 2047 MB (0x7FEFFFFF). If your file system permits 4GB files, set the
values to 4095 MB (0xFFEFFFFF).

Note: Issuing INIT_XB restores all system variables (those setable via
this routine) and function pointers to their default values. This is done
even if INIT_XB returns an error that BULLET has already been initialized.

20

Bullet/2 API Reference

SET_DVMON_XB

This routine is obsolete.

21

Low-level Data

CREATE_DATA_XB

Uses CREATEDATAPACK

IN OUT
CDP.func CDP.stat
CDP.filenamePtr
CDP.noFields
CDP.fieldListPtr
CDP.fileID

Create a new BULLET DBF data file with the name at CDP.filenamePtr, and an
optional DBT memo file.

Before using this routine, allocate an array of field descriptors of type
FIELDDESCTPYE, one for each field in the record (number of fields as set in
CDP.noFields). It is recommended that this allocation be zeroed before
use since fieldnames and reserved entries must be 0-filled:

FIELDDESCTYPE fieldList[12]; // 12 fields used in data record
memset(fieldList,0,sizeof(fieldList)); // init unused bytes to 0 (required)

Filename

The drive and path must exist if used as part of the filename. Long
filenames may be used if supported by the file system in use. As with all
text strings used by Bullet, the filename must end in a '\0'.

Number of Fields

The number of descriptors in the array, described next. Each field has a
descriptor. The tag field is not a formal field, and so has no descriptor,
and is not counted in the number of fields. The maximum fields is 254
according to the DBF standard. Bullet allows 255, but 254 should be used
if creating a standard DBF file.

Field Descriptors

For each field, a descriptor is used to identify and type it. These
descriptors are assigned to an array; the pointer to that array is assigned
to CDP.fieldListPtr. The format of the descriptor follows, with a physical
format in DBF File Format.

o Fieldname

10 characters plus null byte terminator. Valid fieldname characters are
ASCII A-Z (upper-case) and the underscore (ASCII 95). All bytes after the
fieldname must be null bytes. E.g., if the fieldname is "LNAME", five
characters, the following six bytes (including the 11th byte) are set to 0.
The eleventh byte is always a null byte since 10 characters is the maximum
fieldname length. Extended ASCII characters (above 127) should not be
used.

fieldList[0].fieldname = "ANYNAME"; // see memset() above

22

Bullet/2 API Reference

o Field type and size

Standard Xbase field types are C, D, L, M, and N:

Type Description
C Character field, any code page character, 1 to 255 characters.

Null bytes are not desirable except as a string terminator. There is
no requirement that strings be terminated with a '\0'. The field
data should be left-justified within the field, but this is not
required (in which case use leading spaces, not 0 bytes).

fieldList[0].fieldType = 'C';
fieldList[0].fieldLen = 25; // since C type, space fill data
fieldList[0].fieldDC = 0;

D Date field, valid ASCII digits for date, 8 characters.

The physical format is YYYYMMDD, where YYYY is the year (1999), MM is
the month (1-12), and DD the day (1-31). The date field is always 8
bytes long, and is in ASCII digits '19991231'). If no date, set to
all spaces.

fieldList[0].fieldType = 'D';
fieldList[0].fieldLen = 8;
fieldList[0].fieldDC = 0;

L Logical field, <SPACE> Y N T F y n t f, 1 character.

A single-byte field. When not yet initialized the value will be a
<SPACE> (ASCII 32). This is typically displayed as a '?' to the user,
indicating that the field has not been initialized. Initialized
values are variations of yes, no, true, false ('Y', 'y', etc.).

fieldList[0].fieldType = 'L';
fieldList[0].fieldLen = 1;
fieldList[0].fieldDC = 0;

M Memo field, 10 ASCII digits, 10 characters.

Field data is used as the block number of the corresponding DBT memo
file. Each block is typically 512 bytes, with the first block (block
#0) used as the memo file header. If no block is used in the .DBT by
this record, the field is set to <SPACES>. The first memo block is
stored as '0000000001'. (This description is valid for dBASE IV and
later memo files, as created and used by BULLET.) Some Xbase versions
use field types B and G as variations of memo files. They are as M,
but contain general data (as in anything), while memo files contain
only text. BULLET supports any type data in its memo files, and you
may use the CDP.fieldType of 'B' or 'G'.

More than one memo field per record is permitted. For example, you
may need a memo for the printable address, where the address is free-
form rather than in separate fields (i.e., you have both forms), and

23

Low-level Data

another memo for general notes, and yet a third for problem reports,
and so on. All these, and all memos for the rest of the DBF file, are
stored in the same DBT memo file.

Note: BULLET does not use the fieldType with regard to identifying
memo field type; it is the programmer's responsibility to check the
fieldType and act on it accordingly.

fieldList[0].fieldType = 'M';
fieldList[0].fieldLen = 10;
fieldList[0].fieldDC = 0;

N Numeric field, ASCII digits, 19 digits maximum (see below).

All standard Xbase data is stored in ASCII form (for universal
exchange). Numeric fields are to be right-justified, with leading
spaces, and an aligned decimal point, if any (relative this field in
other records). Do not end the field with a null byte.

The total size of the numeric field is specified in .fieldLen, which
includes any leading sign, the decimal point, and decimal digits to
the right of the decimal point (if any decimal point). The maximum
total size is 19 places. If a decimal point, then the number of
digits to the right may be from 1 to 15 digits, but must be no more
than the total-2.

FieldLen.FieldDC Example
8.2 ' 2345.78'
8.2 '12345.78'
8.2 '-2345.78'
8.1 '123456.8'
8.0 '12345678'
5.3 '2.235'
5.4 (not valid)

fieldList[0].fieldType = 'N';
fieldList[0].fieldLen = 8;
fieldList[0].fieldDC = 2;

Although not dBASE compatible, you may use binary fields in your data
records. The Xbase standard always has ASCII data in the data fields, even
if the field is numeric. For example, an 'N' type field of 8.2 (total
length.decimal-count) is stored as an ASCII text string in the data record,
say, a string like ' 1100.55'. If you want dBASE compatibility your field
data must also be ASCII. However, if you can forgo this requirement, you
can use binary values in the fields.

To do this you must specify a field type of 'Y' (actually, anything but an
'N') and, if it is to be used as a key field, also set the sort function to
the appropriate type (S16_SORT, etc.). The field length
(fieldList[x].fieldLen) for a 'Y' field type is 2 if 16-bit, and 4 if 32-
bit. Also possible is floating-point (with a custom sort-compare
function). A likely field type marker for this would be 'F'. Note that

24

Bullet/2 API Reference

both 'Y' and 'F' are completely non-standard Xbase types, and only your
programs will understand them.

Note: 'B' should not be used as a binary field type marker since dBASE V
uses 'B' to signify a binary-data memo file field. Bullet makes no
distinction in its memo file data; anything can be placed in them.
Typically, your memo fields are marked as 'M' in Bullet, but could also be
'B' or 'G'.

File ID

Conventional dBASE DBF files have a CDP.fileID=3. To create a memo file
(DBT, dBASE IV compatible), set CDP.fileID=x8B. For the DBT to be created,
both bits 3 and 7 (0x88) must be set. The other bits may be anything, and
are not checked.

In creating your DBF files, specify CDP.fileID=3 to ensure compatibility
across Xbase versions. If creating a non-standard DBF (e.g., non-standard
field types, extended field lengths, etc.) it's recommended to use
CDP.fileID=0 or CDP.fileID=1. For a standard DBF file with a memo file
(dBASE IV or later), use CDP.fileID=0x8B (that's a B, as in bee).

Generally, field data is space-filled. String terminators are allowed in
C-haracter field types, but should not be used in other fields.

Memo File Creation

If bits 3 and 7 are set in CDP.fileID, a memo file is created for the DBF.
The memo filename will be the same as the DBF name except the extension.
The memo file is created after the DBF, with a block size of 512 bytes, and
filename extension of '.DBT'. The default block size and extension can be
overridden (see SET_SYSVARS_XB) prior to calling this routine.

25

Low-level Data

OPEN_DATA_XB

Uses OPENPACK

IN OUT
OP.func OP.stat
OP.filenamePtr OP.handle
OP.asMode

Open an existing DBF data file for use. For DBF opens, two parameters are
specified: the filename and the access-sharing mode. The OP.xbLink
parameter is used only for index opens, and so is not used here.

The OP.asMode has optional cache mode settings. The caching modes cover
locality, write-through, and skip cache. Locality is typically mostly
random (RND_LOCALITY), but may be mostly sequential if the data file has
been sorted and the index file recently reindexed and processing is mostly
in-order (first to last, rather than random). Locality is used to tune the
cache. Also, normally, data is written to the cache with control returning
immediately to the program before the disk is written (an asynchronous
write). To force the write to take place before control is returned (a
synchronous write), use the WRITE_THROUGH mode. To skip the cache
completely, use the SKIP_CACHE mode. This, as all OP.asMode settings,
affects this file handle only.

On a successful open, the file handle is returned. Use this handle for all
further access to this file. If the DBF was created with a compatible memo
file, it is also opened. The handle of the memo file is available via
STAT_DATA_XB, but all access to the memo file is made with the handle of
the memo file's master DBF (the handle returned by this routine in
OP.handle). The memo file is opened using the same OP.asMode.

Note: FoxPro DBF files with Fox memo files (FPT) use an ID of 0xFF.
Bullet does not support FoxPro memo files, and so opening a FoxPro DBF with
a Fox memo file returns the warning message, WRN_CANNOT_OPEN_MEMO. The DBF
file is opened, and the warning can be ignored.

Once open, you can get information on the data file by using STAT_DATA_XB.

Each DBF data file opened allocates and commits at least 4K bytes for
internal use:

Number of Fields Memory
1 to 121 4KB

122 to 249 8KB
250 to 255 12KB

This memory is released when you close the file with CLOSE_DATA_XB. or
issue EXIT_XB.

Note: You must open the data file before you can open or create any of its
index files.

26

Bullet/2 API Reference

When BULLET creates a DBF, it forces all fieldnames to upper-case (it's a
DBF requirement) and 0-fills them as well. On data file opens
(OPEN_DATA_XB), it also does this, and so any header copy
(COPY_DATA_HEADER_XB) will have upper-cased fieldnames (the original file
is not changed). To prevent BULLET from mapping the fieldnames to upper-
case (NLS mapping, though fieldnames should be standard ASCII characters
only), set bit31 of OP.asMode to 1 (0x80000042, for example). This skips
the case mapping. Zero-filling always takes place, and starts after the
first '\0' byte in the fieldname.

27

Low-level Data

CLOSE_DATA_XB

Uses HANDLEPACK

IN OUT
HP.func HP.stat
HP.handle

Close an existing data file.

Closing the file updates the file header and releases the memory used by
the file. Any associated memo file is closed, too. Any outstanding locks
should be unlocked before calling this routine.

Note: Remaining locks belonging to this handle are released by the OS upon
the successful close.

28

Bullet/2 API Reference

STAT_DATA_XB

STATDATAPACK

IN OUT
SDP.func SDP.stat SDP.recordLength
SDP.handle SDP.fileType SDP.xactionFlag

SDP.flags SDP.encryptFlag
SDP.progress SDP.herePtr
SDP.morePtr SDP.memoHandle
SDP.fields SDP.memoBlockSize
SDP.asMode SDP.memoFlags
SDP.filenamePtr SDP.memoLastRecord
SDP.fileID SDP.memoLastSize
SDP.lastUpdate SDP.lockCount
SDP.records

Return information BULLET has on the DBF data file specified by SDP.handle.

Item Description
stat Return code of operation
fileType 1 for DBF
flags Bit0=1 if file has changed since last flush (dirty)

Bit1=1 if the file has its entire region locked (full lock)
Bit2=1 if the file has a shared lock in use(cannot write to)

progress Percentage of pack operation completed, 1-99, or 0 if done
morePtr Always 0
fields Number of fields (does not included implicit tag field)
asMode Access-sharing-cache mode at open (excludes NoCaseMap bit31)
filenamePtr Pointer to the filename as used in OPEN_DATA_XB
fileID ID used when DBF was created (the first byte of the file)
lastUpdate Last change (high word=year, low byte=day, high byte=month)
records Number of records in DBF (includes any deleted records)
recordLength Total length of a data record, including tag field
xactionFlag Not currently used
encryptFlag Not currently used
herePtr Pointer to internal data control area for this file handle
memoHandle Handle of open memo file (0 if none)
memoBlockSizeMemo file block size (512 is typical, 24 is minimum)
memoFlags Bit0=1 dirty
memoLastRecord Last accessed memo 0 if none; same as 'block number')
memoLastSize Size of last memo (in bytes, including 8 bytes overhead)
lockCount Number of full-locks (locked on first, unlocked on last)

Typically, your program tracks whether a particular handle belongs to an
index file or data file. In cases where this is not possible, call the
STAT_HANDLE_XB routine to determine what file type a handle is.

29

Low-level Data

Note: In network environments, you should have an exclusive lock on the
data file (and implicitly, therefore, the memo file, if any) before using
this routine to ensure that the information is current. This also applies
to multi-process environments on a single machine. This routine is not
mutex-protected. During the call, the file handle must not be closed by
another thread.

30

Bullet/2 API Reference

READ_DATA_HEADER_XB

Uses HANDLEPACK

IN OUT
HP.func HP.stat
HP.handle

Reload the disk copy of the data header for the opened DBF data file
handle, refreshing the in-memory copy. Any associated memo file is
refreshed, too.

Normally, this routine is not called directly but rather is done
automatically when you full-lock the file (LOCK_XB). This routine does not
refresh the header if the current state is dirty (SDP.flags, bit0=1); it
returns an error if tried.

Since it is recommended that a full-lock be in force before using this
routine (shared or exclusive), and since a full-lock always reloads the
header anyway, calling this routine should never be required. If ever
there is a reason to use this routine without having a full-lock in force,
then, of course, you may need to. However, it is not wise to reload the
header without a full-lock (which locks the header). If you are using your
own lock routines, this call will be very useful.

In single-user, single-tasking systems this routine is not needed.
However, in a multi-user or multi-tasking system it's possible, and
desirable, for two or more programs to use the same data file. Consider
this scenario: A data file has 100 records. Two programs access this data
file, both opening it. Program 1 locks the file, adds a new record, then
flushes and unlocks the file. Program 1 knows that there are now 101
records in the file. However, Program 2 is not aware of the changes that
Program 1 made--it thinks that there are still 100 records in the file.
This out-of-sync situation is easily remedied by having Program 2 reload
the data header from the file on disk.

How does Program 2 know that it needs to reload the header? It doesn't.
Instead, BULLET uses a simple, yet effective, approach when dealing with
this. When BULLET full-locks a file, BULLET automatically reloads the
header by using this routine. When removing the full-lock, BULLET
automatically flushes the header using FLUSH_DATA_HEADER_XB (unless the
current lock is a shared lock (SDP.flags bit2=1)).

31

Low-level Data

FLUSH_DATA_HEADER_XB

Uses HANDLEPACK

IN OUT
HP.func HP.stat
HP.handle

Write the in-memory copy of the data header for the opened DBF data file
handle to disk. The actual write occurs only if the header has been
changed (the dirty bit is set). Any associated memo file is flushed, too.
This routine ensures that the data header on disk matches exactly the data
header that is being maintained by BULLET.

Normally, this routine is not called directly but rather is done
automatically when you unlock the file (UNLOCK_XB). This routine does not
write out the header if the current lock state is shared (SDP.flags,
bit2=1); it returns an error if tried. Unlocking a full-lock performs a
flush automatically, and so you may never need to explicitly call this
routine. Also, when relocking from an exclusive full-lock to a shared
full-lock, an automatic flush is performed.

Assume the following: A data file with 100 records. Your program opens the
data file and adds 1 record. Physically, there are 101 records on disk.
However, the header image of the data file on disk still reads 100 records.
This isn't a problem, BULLET uses its internal copy of the data header and
the internal copy does read 101 records. But, if there were a system
failure now, the image of the header would not get updated since the disk
image is written only on a CLOSE_ or FLUSH_DATA_XB, or on EXIT_XB (and also
prior to PACK_RECORDS_XB). After the system restarts, BULLET opens the
file, reads the header and thinks that there are 100 records. You lost a
record. Now, if after that record add your program issues
FLUSH_DATA_HEADER_XB, the header on disk is refreshed with the in-memory
copy, keeping the two in sync. This routine also updates the directory
entry for the file, keeping things neat there (file size). Still, it
doesn't come without cost: flushing takes additional time, therefore, you
may elect to flush periodically, or whenever the system is idle.

Note: You should have a full-lock on the file before using this routine.

32

Bullet/2 API Reference

COPY_DATA_HEADER_XB

Uses COPYPACK

IN OUT
CP.func CP.stat
CP.handle
CP.filenamePtr

Copy the DBF file structure of an open data file to a new file.

This routine makes it easy for you to duplicate the structure of an
existing DBF file without having to specify all the information needed by
CREATE_DATA_XB. The resultant DBF will be exactly like the source,
including number of fields and field descriptions, and an empty memo file,
if applicable. It contains 0 records. It may be opened as a regular
Bullet data file.

A typical use for this is to create a work file, where only a subset of
records are required. For example: You want to process all records of
those whose last name starts with A. Copy the header to a work file, use
GET_XB routines to get records meeting the criterion, writing those that
fit the criterion to the work file (using either Add/Reindex, or Insert).
A new index can be specified, or an existing index can be copied using
COPY_INDEX_HEADER_XB.

33

Low-level Data

ZAP_DATA_HEADER_XB

Uses HANDLEPACK

IN OUT
HP.func HP.stat
HP.handle

Delete all records in a DBF data file.

This routine is similar to COPY_DATA_HEADER_XB except for one major
difference: All data records in the source file are physically deleted.
No action is performed on the DBF's memo file, if any.

If you have a DBF file with 100 records and use ZAP_DATA_HEADER_XB on it,
all 100 records will be physically deleted and the file truncated as if no
records were ever in the file. All data records are lost forever.

34

Bullet/2 API Reference

CREATE_INDEX_XB

Uses CREATEINDEXPACK

IN OUT
CIP.func CIP.stat
CIP.filenamePtr
CIP.keyExpPtr
CIP.xbLink
CIP.sortFunction
CIP.codePage
CIP.countryCode
CIP.collatePtr
CIP.nodeSize

Create a new BULLET index file.

Before you can create an index file, you must first have opened (and have
created if necessary) the BULLET DBF data file that it is to index. To
open the data file, use OPEN_DATA_XB. To create the index file, you need
to provide the name to use, the key expression, the DBF file link handle
(obtained from the OPEN_DATA_XB call), sort function/flags, and optionally,
the code page, country code, and collate table. There's also a node size
parameter. Select 512, 1024, or 2048 bytes.

Note: BULLET has an optional external data mode where only indexing is
done -- no data file link is used. In this mode, BULLET manages the index
files of the key and key data you provide (key data is any 32-bit item,
e.g., a record number, offset, etc.). This would be useful for indexing
non-DBF files, even files with variable-length records.

Filename

The drive and path must exist if used as part of the filename. Long
filenames may be used if supported by the file system in use.

Key Expression

The key expression is an ASCIIZ string composed of the elements that are to
make up this index file's key. The key can be composed of any or all of
the fields in the DBF data record, or sub-strings within any of those
fields. Up to 16 component parts can be used in the expression.

Two functions are supported in evaluating a key expression. These are
SUBSTR() and UPPER():

SUBSTR() extracts part of a field's data starting at a particular position
for x number of characters.

UPPER() converts all lower-case letters to their upper-case equivalent.
Since BULLET supports NLS, UPPER() conversion is not required for proper
sorting of mixed-case text strings.

35

Low-level Index

Any name used in the key expression must be a valid field name in the DBF
data file. Below are a few sample key expressions for the given data file
structure:

Name Type Len DC
FNAME C 25 0
LNAME C 25 0
SSN C 9 0
DEPT N 5 0

A few example key expression strings for this structure:

keyExpression[]="LNAME";
keyExpression[]="LNAME+FNAME";
keyExpression[]="SUBSTR(LNAME,1,4)+SUBSTR(FNAME,1,1)+SUBSTR(SSN,6,4)";
keyExpression[]="UPPER(LNAME+FNAME)"; // for ASCII sort function only
keyExpression[]="DEPT+SSN";

In the last example above, even though DEPT is a numeric field type (N), it
can still be used as a component of a multi-part character key with SSN
(whose type is set to character). This because numeric fields in dBASE DBF
data files are ASCII digits, not binary values, and are sorted according to
the ASCII value or NLS weight.

The key expression is parsed when the index file is created (this routine)
and also when reindexed (REINDEX_XB). The parser() function, which parses
the key expression, may be replaced by a programmer-supplied function if
additional functionality is needed. See Custom Expression Parser Routine
for details.

DBF File Link Handle (xbLink)

Since BULLET evaluates the key expression when the file is created (this
routine) or during reindex, it must have access to the DBF file to verify
that the key expression is valid. You must, therefore, supply the OS file
handle of the opened DBF data file. If you later change the structure of
the DBF data file (add new fields, remove others, etc.), you must use the
reindex routine to re-evaluation the key expression. If the key expression
is no longer valid after the data file changes (key field has changed
names, etc.), then you must create a brand new index file with this
routine, supplying the new key expression, rather than reindexing.

Note: Handles 0-2 are reserved handles and should never be used for any
BULLET routine. Also, .xbLink of -1 is reserved by BULLET to indicate an
external data index for index create and open routines.

Sort Function

The sort function specifies the sort method for the index file.
Essentially, this defines the compare function used by the access methods
employed by BULLET when doing any type of key access (reading and writing).
There are six intrinsic sort compare functions available, with an
additional 10 sort compare functions that can be specified by the
programmer (see Custom Sort-Compare Function).

36

Bullet/2 API Reference

While not recommended, duplicate key values are supported and managed by
BULLET. The flag DUPS_ALLOWED is OR'ed with the sort function value to
specify this. Generally, it is not acceptable to allow duplicate keys for
an index; there should be one key identifying one record without any
further investigation needed to determine if the key is indeed for that
record. This is not possible, not consistently so, when duplicate keys
exist. It is much simpler to define your key so that duplicates are not
generated, than it is to deal with duplicate keys once you have them. If
an attempt to insert a key that already exists in the index file is made,
and DUPS_ALLOWED was not specified when the index file was created, the
insert fails (either a STORE_KEY_XB, an INSERT_XB, or a REINDEX_XB
operation), and error EXB_KEY_EXISTS is returned.

Only data contained within a record should be used to build a key. The
physical record number is not part of the data of a record since it can
change at any time without you knowing about it (during a pack, for
example). Do not use the record number in an attempt to generate unique
keys. Only use what is available in the data record itself, so that the
key can be built, or rebuilt, at any time.

The intrinsic sort compare functions of BULLET are:

ASCII_SORT 1 - ASCII (up to 16 key components)
NLS_SORT 2 - NLS (up to 16 key components)
S16_SORT 3 - 16-bit signed integer (single component)
U16_SORT 4 - 16-bit unsigned integer (single component)
S32_SORT 5 - 32-bit signed integer (single component)
U32_SORT 6 - 32-bit unsigned integer (single component)

To expand on the basic functionality provided by BULLET, you can supply
your own parser, build, and sort compare routines, and have BULLET use them
instead. With your own routines in place, you can have BULLET do just
about anything with regard to the index file, including evaluating the key
expression dynamically; using more components; allowing multi-part binary
keys; and more.

Generally, character data (type C) is left-justified, and unused space is
padded with the SPACE character (ASCII 32). It is permissible to use C-
type strings, or to 0-fill unused space.

Numeric data (type N) is right-justified, with leading space to be padded
with the SPACE character. It is not permissible to use 0-fill leading
bytes (literal '0' can used, however). Since the field is right-justified,
it is not generally desirable to terminate the field with a 0 byte,
either. If a decimal count is specified (not 0), the decimal point
location is to be the same for all entries in this field. The field
description must match the actual data: If the field length and field
decimal count was specified as 10.2 (10 total bytes, 2 digits to the right
of the decimal, then the data is to be formatted so that '-234567.90' is
the longest data that is to be entered in that field. All entries in all
records for this field must be of the same format. For example, '
987654.21', or ' 23.01', or ' -1.99' (note the leading spaces).

37

Low-level Index

Numeric data is indexed as ASCII values (i.e., the key remains character
digits) unless a binary sort function is specified.

Using one of the binary integer sort compare functions requires the
following:

1. Single component expression.
2. Field type must be N if the field has ASCII digits, or if the data is

binary, then the field type must be Y (actually, anything but N).
3. If ASCII digits, the value must fit into the function size (-32768 to

32767 or 0-65535 for signed/unsigned 16-bit 2,147,483,647 to -
2,147,483,648 or 0-4,294,967,295 for 32-bit signed/unsigned values).

Although not dBASE compatible, you may use binary fields in your data
records. The Xbase standard always has ASCII data in the data fields, even
if the field is numeric. For example, an 'N' type field of 8.2 (total
length.decimal-count) is stored as an ASCII text string in the data record,
say, a string like ' 1100.55' (there is no \0 string terminator). If you
want dBASE compatibility, your field data must be ASCII. However, if you
can forgo this requirement, you can use binary values in the fields.

To do this you must specify a field type of 'Y' (actually, anything but an
'N') and, if it is to be used as a key field, also set the sort function
to the appropriate type (S16_SORT, etc.). The field length
(fieldList[x].fieldLen) for a 'Y' field type is 2 if 16-bit, and 4 if 32-
bit. For 64-bit integers, a custom sort-compare function is required since
there is no intrinsic 64-bit function available.

Note: 'B' should not be used as a binary field type marker since dBASE V
uses 'B' to signify a binary-data memo file field. Bullet makes no
distinction in its memo file data; anything can be place in them.
Typically, your memo fields are marked as 'M' in Bullet, but could also be
'B' or 'G'.

The key expression string you specify may be up to 159 characters, and
evaluate out to 64 bytes (62 bytes if DUPS_ALLOWED is specified). The
expression string must be 0-terminated, as are all strings used by BULLET
itself (filenames, etc.).

National Language Support (NLS)

National Language Support is available to properly sort most languages'
alphabets. BULLET uses NLS to build the collate sequence table (sort
table) that it uses to ensure proper sorting of mixed-case keys as well as
the sorting of foreign language alphabets which use extended-ASCII. In
order for BULLET to use the proper collate table, it must know what code
page and country code to use. If not supplied, Bullet gets this
information directly from the OS, which provides the cc/cp for the current
process. If you supply cc/cp, the code page must be loaded or an error is
returned (see OS/2's CHCP command). The collate table generated is made
part of the index file so that all subsequent access to the index file
maintains the original sort order, even if, say, the MIS shop is moved to
another location/computer system using another country code/code page.
These three items are discussed below.

38

Bullet/2 API Reference

Code Page

To use the default code page of the current process, specify a code page of
0. The OS is queried for the current code page and this code page is then
used. Any valid and available code page can be specified. This is used
only if a custom sort-compare or NLS sort is specified.

Country Code

To use the default country code of the current process, specify a country
code of 0. The OS is queried for the current country code and this code is
then used. Any valid country code can be specified. This is used only if
a custom sort-compare or NLS sort is specified.

Custom Collate Table

If a null-pointer is specified, and a custom sort-compare or NLS sort is
specified, BULLET queries the OS for the collate sequence table to use
based on the code page and country code specified. Otherwise, the supplied
table is used. Intrinsic sorts other than NLS use no collate table, and
the country code or code page are not used, either.

To use a sort weight table of your own choosing, supply a non-NULL pointer
to this parameter. If non-NULL, the passed table is used for sort
compares. The table is composed of 256 weight values, one per character.
For example, table position 65 ('A') and table position 97 ('a') could
both be weighted 65, so that each are considered equal when sorted. If a
custom sort-compare function was specified, this sort table may, or may
not, be used -- it depends on whether the sort compare function uses the
table (it's all up to the custom sort-compare function's logic).

Typically, you set both the code page and country code = 0, and the collate
table pointer to NULL.

39

Low-level Index

Node Size

The index file is read and written in node-size chunks. The larger the
node size, the more keys are read or written per chunk. Generally, a
smaller node size offers better random key access, while a larger node size
offers better sequential key access.

Typically, an average node utilizes 66% of the node space for keys (a very
small number may contain only a few keys, while some may be filled
completely). In a 512-byte node file, for a key length of 8, there is room
for (512-5)/(keylength+8) nodes, or 31 keys. Since a typical node is
filled to 66%, that means about 20 keys per node. For a 2048-byte node
file, same parameters, there is room for (2048-5)/(keylength+8), or 127
keys. At the standard 66% load, there are typically 83 keys per 2K node.
That's 3 more keys per 2K of disk than the 512-byte node gives for 4 nodes
(20 keys*4), The trade-off is that each node is 4 times as large, and so
requires 4 times more searching. Actual performance differences may be
minimal, or may be great. Run tests on expected data to determine the best
for the data and access use.

40

Bullet/2 API Reference

OPEN_INDEX_XB

Uses OPENPACK

IN OUT
OP.func OP.stat
OP.filenamePtr OP.handle
OP.asMode
OP.xbLink

Open an existing index file for use. For index opens, three parameters are
specified: the filename, the access-sharing mode, and the handle of the
open DBF file that this file indexes. It is required to open the data file
before you can open its related index file.

Note: Handles 0-2 are reserved handles and should never be used for any
BULLET routine. Also, .xbLink of -1 is reserved by BULLET to indicate an
external data index for index create and open routines.

On a successful open, the file handle is returned. Use this handle for all
further access to this file.

Once open, you can get information on the index file by using
STAT_INDEX_XB.

Each index file that you open allocates and commits 4K bytes for internal
use. This memory is released when you close the file with CLOSE_INDEX_XB
or issue EXIT_XB, or you program terminates.

The OP.asMode has optional cache mode settings. The caching modes cover
locality, write-through, and skip cache. Locality is typically mostly
random (RND_LOCALITY), but may be mostly sequential if the data file has
been sorted and the index file recently reindexed and processing is mostly
in-order (first to last, rather than random). Locality is used to tune the
cache. Also, normally, data is written to the cache with control returning
immediately to the program before the disk is written (an asynchronous
write). To force the write to take place before control is returned (a
synchronous write), use the WRITE_THROUGH mode. To skip the cache
completely, use the SKIP_CACHE mode. This, as all OP.asMode settings,
affects this file handle only.

BULLET has an optional external data mode where only indexing is done -- no
data file link is used. In this mode, BULLET manages the index files of
the key and key data you provide (key data is any 32-bit item, e.g., a
record number, offset, etc.). This would be useful for indexing non-DBF
files, even files with variable-length records. Only those routines that
do not access the data file may be used (any routine using AP.recPtr, for
example, could not be used, but NEXT_KEY_XB may).

41

Low-level Index

CLOSE_INDEX_XB

Uses HANDLEPACK

IN OUT
HP.func HP.stat
HP.handle

Close an open index file.

Closing the file updates the file header and releases the memory used by
the file. Any outstanding locks should be unlocked before calling this
routine.

Note: Remaining locks belonging to this handle are released by the OS upon
the successful close.

42

Bullet/2 API Reference

STAT_INDEX_XB

Uses STATINDEXPACK

IN OUT
SIP.func SIP.stat SIP.keyLength
SIP.handle SIP.fileType SIP.keyRecNo

SIP.flags SIP.keyPtr
SIP.progress SIP.herePtr
SIP.morePtr SIP.codePage
SIP.xbLink SIP.countryCode
SIP.asMode SIP.CTptr
SIP.filenamePtr SIP.nodeSize
SIP.fileID SIP.sortFunction
SIP.keyExpPtr SIP.lockCount
SIP.keys

Return information BULLET has on the index file specified by SIP.handle.

Item Description
stat Return code of operation
fileType 0 for index, IX3
flags Bit0=1 if file has changed since last flush (dirty)

Bit1=1 if the file has its entire region locked (full lock)
Bit2=1 if file has shared full-lock in use (cannot write to)

progress Percentage of reindex operation completed, 1-99, 0 if done
morePtr Always 0
xbLink Handle of the open DBF file this file indexes
asMode Access-sharing-cache mode as specified at open
filenamePtr Pointer to the filename as used in OPEN_INDEX_XB
fileID '31ch' (the first four bytes of the file)
keyExpPtr Pointer to the key expression used when index was created
keys Number of keys in the index file
keyLength Length of key, including 2-byte enumerator if DUPS_ALLOWED
keyRecNo The DBF record number that the last accessed key indexes
keyPtr Pointer to the last accessed key (valid for keyLength bytes)
herePtr Pointer to the internal data control for this file
codePage Code page used when index was created (actual code page)
countryCode Country code used when index created (actual country code)
CTptr Pointer to collate sequence table used for NLS sorting
nodeSize Size of an index node, 512, 1024, or 2048 bytes
sortFunction Index sort-compare (low word) and sort flags (high word)
lockCount Number of full-locks (locked on first, unlocked on last)

Typically, your program tracks whether a particular handle belongs to an
index file or a data file. In cases where this is not possible, call the
STAT_HANDLE_XB routine to determine what file type a handle is.

Note: In network environments, you should have an exclusive lock on the
index file before using this routine to ensure that the information is
current. This routine is not mutex-protected. During the call, the file
handle must not be closed by another thread.

43

Low-level Index

READ_INDEX_HEADER_XB

Uses HANDLEPACK

IN OUT
HP.func HP.stat
HP.handle

Reload the disk copy of the index header for the opened index file handle,
refreshing the in-memory copy.

Normally, this routine is not called directly but rather is done
automatically when you full-lock the file (LOCK_XB). This routine does not
refresh the header if the current state is dirty (SIP.flags, bit0=1); it
returns an error if tried.

Since it is recommended that a full-lock be in force before using this
routine (shared or exclusive), and since a full-lock always reloads the
header anyway, calling this routine should never be required. If ever
there is a reason to use this routine without having a full-lock in force,
then, of course, you may need to. However, it is not wise to reload the
header without a full-lock (which locks the header). If you are using your
own lock routines, this call will be very useful.

In single-user, single-tasking systems this routine is not needed.
However, in a multi-user or multi-tasking system it's possible, and
desirable, for two or more programs to use the same data file. Consider
this scenario: An index file has 100 keys. Two programs access this index
file, both opening it. Program 1 locks the file, adds a new key, then
flushes and unlocks the file. Program 1 knows that there are now 101 keys
in the file. However, Program 2 is not aware of the changes that Program 1
made--it thinks that there are still 100 keys in the file. This out-of-
sync situation is easily remedied by having Program 2 reload the index
header from the file on disk.

How does Program 2 know that it needs to reload the header? It doesn't.
Instead, BULLET uses a simple, yet effective, approach when dealing with
this. When BULLET full-locks a file, it automatically reloads the header
using this routine. When removing the full-lock, BULLET automatically
flushes the header using FLUSH_INDEX_HEADER_XB (unless the current lock is
a shared lock (SIP.flags bit2=1)).

44

Bullet/2 API Reference

FLUSH_INDEX_HEADER_XB

Uses HANDLEPACK

IN OUT
HP.func HP.stat
HP.handle

Write the in-memory copy of the index header for the opened index file
handle to disk. The actual write occurs only if the header has been
changed. This ensures that the index header on disk matches exactly the
index header that is being maintained by BULLET.

Normally, this routine is not called directly but rather is done
automatically when you unlock the file (UNLOCK_XB). This routine does not
write out the header if the current lock state is shared (SIP.flags,
bit2=1); it returns an error if tried. Unlocking a full-lock performs a
flush automatically, and so you may never need to explicitly call this
routine. Also, when relocking from an exclusive full-lock to a shared
full-lock, an automatic flush is performed.

Assume the following: An index file with 100 keys. Your program opens the
index file and adds 1 key. Physically, there are 101 keys on disk.
However, the header image of the index file on disk still reads 100 keys.
This isn't a problem; BULLET uses its in-memory copy of the index header
and the in-memory copy does read 101 keys. But, if there were a system
failure after the key add, the disk image of the header would not get
updated since the disk image is written only on a CLOSE_ or FLUSH_INDEX_XB,
or on EXIT_XB (and also prior to REINDEX_XB). After the system restarts,
BULLET opens the file, reads the header and thinks that there are 100 keys.
You lost a key. Now, if after that key was added, your program issues a
FLUSH_INDEX_HEADER_XB, the header on disk is refreshed with the in-memory
copy, keeping the two in sync. The routine updates the directory entry,
keeping things neat there as well (file size). Still, it doesn't come
without cost: flushing will take additional time, therefore, you may elect
to flush periodically, or whenever the system is idle.

Note: You should have a full-lock on the file before using this routine.

45

Low-level Index

COPY_INDEX_HEADER_XB

Uses COPYPACK

IN OUT
CP.func CP.stat
CP.handle
CP.filenamePtr

Copy the index file structure of an open index file to another file.

This routine duplicates the structure of an existing index file without
having to re-specify the information needed by CREATE_INDEX_XB. The
resultant index file will be exactly like the source, including sort
function and key expression. It contains 0 keys.

46

Bullet/2 API Reference

ZAP_INDEX_HEADER_XB

Uses HANDLEPACK

IN OUT
HP.func HP.stat
HP.handle

Delete all keys from an index file.

This routine is similar to COPY_INDEX_HEADER_XB except for one major
difference: All keys in the source file are physically deleted.

If you have an index file with 100 keys and issue ZAP_INDEX_HEADER_XB, all
100 keys will be physically deleted and the file truncated to 0 keys.
REINDEX_XB can be used to rebuild the index file.

Since BULLET reindexes in place, the use of ZAP is not typically needed.

47

Mid-level Data

GET_DESCRIPTOR_XB

Uses DESCRIPTORPACK and FIELDDESCTYPE

IN OUT
DP.func DP.stat
DP.fieldNumber DP.fieldNumber

-or- DP.FD.fieldname
DP.FD.fieldName DP.FD.fieldType

DP.FD.fieldLen
DP.FD.fieldDC

Get the field descriptor information for a field by fieldname or by field
position.

To get descriptor info by fieldname, set DP.fieldNumber=0 and set the
DP.FD.fieldname pointer to the fieldname string. Fieldnames must be 0-
terminated and 0-filled, and must be upper-case, with A-Z and _ valid
fieldname characters. If the string matches a fieldname in the DBF
descriptor area, that field's descriptor info is returned in DP.FD, (FD is
FIELDDESCTYPE), and its position is returned in FD.fieldNumber.

To get descriptor info by field position (i.e., field number), set
DP.fieldNumber to the field's position. The first is field #1. The "tag"
field is not considered a field. If the position is valid (i.e., greater
than 0 and not beyond the last field), that field's descriptor info is
returned in DP.FD.

This routine lets you work with unknown DBF files -- those created by
another program. By reading each field descriptor, by number, from 1 to
number of fields (SDP.noFields), you can generate a run-time layout of the
DBF file. Alternatively, you can get input from your user for a fieldname,
and locate the descriptor by name.

If you need to add or delete a field, be sure to reindex all related index
files so that their key expressions can be re-evaluated. To do this, you
need to create a new data file and build it as you build any other new data
file. Then, copy record-by-record from the old DBF to the new, using the
old record layout for reads, and the new record layout for writes. After
this, reindex any index file related to the DBF file. The old DBF file can
then be deleted.

If non-standard fields are used (i.e., non-char structure members to match
non-ASCII data fields in your non-standard DBF), then be aware that your
compiler more than likely will add padding to align on member-size
boundaries. This will result in a mis-match between your compiler
structure and your DBF structure (as described in fieldList[]). To prevent
this, place #pragma pack(1) / #pragma pack() around your structures that
BULLET uses. Consult your particular compiler for alternate methods if it
does not support #pragma pack.

48

Bullet/2 API Reference

GET_RECORD_XB

Uses ACCESSPACK

IN OUT
AP.func AP.stat
AP.handle *AP.recPtr
AP.recNo
AP.recPtr

Get the physical record from the data file into a data buffer.

The data buffer is typically a struct variable defined as the DBF record
itself is defined. For example, if the DBF record has 2 fields, LNAME and
FNAME, each 25 characters, then the variable would be typed as:

struct rectype {
CHAR tag; /* The Xbase DBF delete flag (must be included) */
CHAR lastName[25]; /* same length as first field's descriptor fieldLen */
CHAR firstName[25];/* same length as second field's descriptor fieldLen */
}; /* 51 */
struct rectype recbuff;

The first record is at AP.recNo=1. The last is SDP.records, determined by
STAT_DATA_XB. The buffer must be at least as large as the record length
(SDP.recordLength).

This method of accessing the data file does not use any indexing.
Generally, this access method is not used except for special purposes
(sequential processing where order is not required). The preferred method
to access the data is by one of the keyed GET_XB routines.

If non-standard fields are used (i.e., non-char structure members to match
non-ASCII data fields in your non-standard DBF), then be aware that your
compiler more than likely will add padding to align on member-size
boundaries. This will result in a mis-match between your compiler
structure (rectype above) and your DBF structure (as described in
fieldList[]). To prevent this, place #pragma pack(1) / #pragma pack()
around your structures that BULLET uses. Consult your particular compiler
for alternate methods if it does not support #pragma pack.

49

Mid-level Data

ADD_RECORD_XB

Uses ACCESSPACK

IN OUT
AP.func AP.stat
AP.handle AP.recNo
AP.recPtr

Append the data record in the data buffer to the end of the DBF file.

This method of adding a record involves no indexing. It is typically used
to build a data file en masse. Indexing is deferred until all records have
been added, and then quickly indexed using REINDEX_XB.

Since ADD_RECORD_XB is extremely fast, if you have several thousand data
records to be added at once, appending records with this routine and
reindexing when all have been added using REINDEX_XB is often faster than
using INSERT_XB for each record to add.

The record number assigned to the record appended is determined by BULLET,
and that record number is returned in AP.recNo.

If non-standard fields are used (i.e., non-char structure members to match
non-ASCII data fields in your non-standard DBF), then be aware that your
compiler more than likely will adding padding to align on member-size
boundaries. This will result in a mis-match between your compiler
structure and your DBF structure (as described in fieldList[]). To prevent
this, place #pragma pack(1) / #pragma pack() around your structures that
BULLET uses. Consult your particular compiler for alternate methods if it
does not support #pragma pack.

50

Bullet/2 API Reference

UPDATE_RECORD_XB

Uses ACCESSPACK

IN OUT
AP.func AP.stat
AP.handle
AP.recNo
AP.recPtr

Write the updated data record to the physical record number.

This method of updating a data record must not be used if any field being
used as a key field (i.e., part of the key expression) is changed.

This method of updating a record is very fast if you know that that update
is not going to alter any field used as a key in any index file that uses
it. You must, of course, first get the data record into the record buffer.
You can then change it, and write the update out to disk using this
routine.

If you need to change a field that is used as a key field, or part of one
(e.g., SUBSTR()), use the UPDATE_XB routine.

If you plan on reindexing with REINDEX_XB immediately after using this
routine, you may elect to update the data file using this method even if
changing any field used as a key, rather than UPDATE_XB. This since
UPDATE_XB is very disk intensive. However, if transaction support is
needed (i.e., updates are dependent on other updates), then UPDATE_XB
should be used.

51

Mid-level Data

DELETE_RECORD_XB

Uses ACCESSPACK

IN OUT
AP.func AP.stat
AP.handle
AP.recNo

Tag the record at the physical record number as being deleted.

This does not tag any in-memory copies of the record so be sure to mark any
such copies as being deleted yourself.

The first byte of every DBF record is reserved for the tag field. This tag
is a space (ASCII 32) if the record is normal, or a * (ASCII 42) if it's
marked as being deleted. This delete tag is a reserved field in the DBF
record and as such is not defined as a formal field with a descriptor.
Make sure that you define your in-memory buffers to reserve the first byte
for the delete tag.

The Xbase DBF standard doesn't physically remove records marked as deleted
from the data file. It doesn't mark them as available/reusable either. To
physically remove records marked as deleted use PACK_RECORDS_XB.

Records can be temporarily marked as deleted during processing and then
recalled to normal status when completed, useful for flagging a record as
having been processed (for example, mass updating using UPDATE_XB). The
GET_XB routines return the record number associated with a key (in
AP.recNo), and that record number can be used for this routine.

While the DELETE_RECORD_XB and UNDELETE_RECORD_XB routines provided in
BULLET use the * and SPACE characters only, you can use whatever character
you want in the tag field when you fill your record buffer structure's
data. Normally, you set the tag field to SPACE (x.tag = ' ';), but, for
example, if you want to implement your own, program-level locking you can
use the tag field as a marker to indicate the record is locked (by using an
'L' character, or ID with bit7=1, or whatever you can think of) and use the
very fast UPDATE_RECORD_XB to set it. Another possibility is set to aside
a field to be used as this, say, along with the user ID of the lock owner.

The SKIP_TAG_SELECT item in SET_SYSVARS_XB can be set to have the
REINDEX_XB routine not place a key value into the index file if a record
has a matching tag field. This may be useful if you want to, say, generate
an ad hoc index for only undeleted records.

52

Bullet/2 API Reference

UNDELETE_RECORD_XB

Uses ACCESSPACK

IN OUT
AP.func AP.stat
AP.handle
AP.recNo

Tag the record at the physical record number as being normal (not deleted).

This does not tag any in-memory copies of the record so be sure to mark any
such copies as being normal.

This routine removes the * character, as put there by DELETE_RECORD_XB, in
the tag field and replaces it with a SPACE. The tag field is always
overwritten with a SPACE, regardless of what it was.

53

Mid-level Data

PACK_RECORDS_XB

Uses ACCESSPACK

IN OUT
AP.func AP.stat
AP.handle

Rebuild the open DBF file by physically removing all records marked as
deleted.

Packing occurs in place using the existing file. It is recommended that
you use BACKUP_FILE_XB to copy the current DBF file before using this
routine in case of a failure during the pack process.

The newly packed file is truncated to reflect the current, actual size.
All records with the tag field set to * are removed from the file.

If there are index files for this DBF file, they must be reindexed after
the pack process by using REINDEX_XB.

Memo files are not affected by this routine. Before packing, it is
recommended that you traverse the data file to be packed, and for records
that are to be deleted, check to see if there is a memo record. If there
is, delete the memo. Do this for each such occurrence. This way, orphaned
memo records will not take up permanent space in the memo file.

54

Bullet/2 API Reference

DEBUMP_RECORD_XB

Uses ACCESSPACK

IN OUT
AP.func AP.stat
AP.handle
AP.recNo

Remove the record identified by AP.recNo from the data file if and only if
the record is the last in the file.

Unlike DELETE_RECORD_XB, this routine physically removes a data record from
the DBF file, provided that the record to delete is the last. STAT_DATA_XB
can be used to identify the last record number (SDP.records is the last).
This, when used after deleting any and all keys in all index files
referencing this record (see DELETE_KEY_XB), is useful if you are managing
a transaction log and need to back out changes made, beyond what BULLET
performs.

If the record is not the last, alternate methods must be used. The
simplest, and often equally as good as physically deleting the record, is
to just mark the record as deleted using DELETE_RECORD_XB and let it remain
in the file until the next PACK_RECORDS_XB. Another option is to overwrite
the record's data with SPACES, or other appropriate field data (such as
HIGH-VALUES, and use UPDATE_XB), if necessary. This routine is the only
method available to physically remove a record from the file, short of
using PACK_RECORDS_XB.

Removing a record with active keys referencing that record will result in
an access error (ERR_UNEXPECTED_EOF) when accessing that key with GET_XB
routines, or will generate stale results. Remove any keys that reference
this record before deleting it.

55

Mid-level Memo

GET_MEMO_SIZE_XB

Uses MEMODATAPACK

IN OUT
MDP.func MDP.stat
MDP.dbfHandle MDP.memoBytes
MDP.memoNo

Get the number of bytes used by the memo at MDP.memoNo.

Memo file allocation is made in blocks, typically of 512 bytes each.
Therefore, a memo of 10 bytes uses 1 allocation block, as would a 500-byte
memo. This size is stored with each memo record, and can be retrieved.
Before accessing a memo record, it's a good idea to retrieve the current
size of the memo so you know how large a buffer you may need if you intend
to read it all in, at one time, or even to just know how much to read, in
total, reading parts of it at a time.

The first memo is at MDP.memoNo=1. The last memo number cannot be easily
determined, but generally this does not need to be known. The memo number
identifying the memo's location is stored in the memo field area of the DBF
record. It is stored as a text string (e.g., '0000000001'). This number
is the physical block number at which the memo starts. Memos are always
stored in consecutive blocks, if more than a single block is needed. For
example, a memo of 513 bytes uses two blocks, say, #1 and #2. The next
memo added would use memo #3 (if #3 is available), rather than #2 since #2
was used by the first memo. Memo numbers may be reassigned (see
UPDATE_MEMO_XB). The highest possible memo number is 589,822 (0x8FFFE).
With the standard 512-byte block size, this allows a memo file to be up to
288MB. If more memo data space is needed, use a larger block size (e.g.,
2KB block size allows over 1GB per memo file).

Notice For All Memo Routines

In multitasking environments you should have a full-lock on the DBF file
that owns this memo file, or at least a record lock on the record that owns
the memo number. In BULLET, locking is not performed on the memo file.
Instead, the lock is implied when the lock is made on the DBF file. This
because a memo file is for one DBF file alone, and so if you have a lock on
the DBF before accessing the memo file (for whatever reason), then no other
process may lock the DBF and also access the memo.

This works only if you restrict your access to the memo file if you have a
lock on the DBF master file (the DBF that this DBT memo file belongs to) or
on the DBF record. For this routine, which only requires access to this
memo record, a record lock is sufficient since no writing is performed.
Further, a shared lock is all that is required. This because all that is
required to keep from stepping on other process's toes is that it be known
that the current memo header info (for this memo record), as known to this
process, is the current state of this memo. In other words, it must be
true that the memo file state on disk exactly matches the memo file state
in memory. With a lock in place, no other process may gain write access to

56

Bullet/2 API Reference

change this memo, "out from under you". A shared lock does allow the other
process to read this memo, and that may be used if no writing is needed.

Each memo routine following states its lock requirements (exclusive full
lock, shared full lock, exclusive record lock, or shared record lock).

57

Mid-level Memo

GET_MEMO_XB

Uses MEMODATAPACK

IN OUT
MDP.func MDP.stat
MDP.dbfHandle *MDP.memoPtr
MDP.memoNo MDP.memoBytes
MDP.memoPtr
MDP.memoOffset
MDP.memoBytes

Read the specified number of bytes of the memo, starting at the offset,
into the buffer. The actual number of bytes read is returned.

Use GET_MEMO_SIZE_XB to determine that total number of bytes you may need
to read. With that, you can allocate a buffer of that size to read the
entire memo into. Or, you can read chunks of the memo at a time, up to the
number of bytes in the memo.

The number of bytes actually read (and stored starting at MDP.memoPtr) is
returned in MDP.memoBytes (overwriting the value you placed there). If the
number of bytes requested is not the same as the number of bytes returned,
you attempted to read beyond the end of the memo. BULLET does not return
an error if you try this, which is SOP for file reads, so check the two if
you need to verify this. An error is returned, however, if you attempt to
read at a starting offset beyond the end of the actual memo data (i.e.,
MDP.memoOffset > memo's data size).

It's recommended that a lock be in force on either the DBF (full-lock) or
on the record that this memo belongs to. A shared lock is okay since no
writing is done.

58

Bullet/2 API Reference

ADD_MEMO_XB

Uses MEMODATAPACK

IN OUT
MDP.func MDP.stat
MDP.dbfHandle MDP.memoNo
MDP.memoPtr
MDP.memoBytes

Add the data from the buffer for the specified bytes to a new memo. The
memo number used is returned.

Any data can be stored in a memo. The memo number returned can be any
value; it can even be less than the previous add's memo number. The reason
for this is that an avail-list is kept for the memo file, and any deleted
or otherwise freed blocks become available for re-use. The memo is stored
in the first contiguous group of free blocks large enough to satisfy the
request. For example, if MDP.memoBytes is from 1 to (blockSize-8) bytes,
the first available block is used. If the size needed is greater than 1
block, then the avail-list is walked and the first contiguous group large
enough to satisfy the request is used. If none of the avail-list groups is
large enough, ultimately, the new memo data is appended to the end of the
file. This is also done if there are no avail-list items at all, such as
in a memo file that has never had deletes or updates.

The returned memo is a binary block number (ULONG). This value should be
converted into an ASCII string (sprintf can be used) and stored in the DBF
data record, in the memo field. The string should be of the form,
'0000000001' (for MDP.memoNo=1), with leading zeros. This data record
should then be written to disk using UPDATE_RECORD_XB.

Since BULLET can be used in non-standard Xbase mode, where binary field
values can be used, you can omit the conversion from binary to ASCII if a
standard DBF is not required. Likewise, when accessing a memo, the
conversion from ASCII to binary would not be required.

It's recommended that a lock be in force on the DBF (full-lock). A shared
lock may not be used since writing to the memo file, and the DBF record, is
required. A full lock is required since the memo file header is read and
written.

59

Mid-level Memo

UPDATE_MEMO_XB

Uses MEMODATAPACK

IN OUT
MDP.func MDP.stat
MDP.dbfHandle MDP.memoNo
MDP.memoNo
MDP.memoPtr
MDP.memoOffset
MDP.memoBytes

Update an existing memo. The update can overwrite current data, append new
data extending the current size, or it can shrink the current size.

Appending data so that the memo is extended may result in a new memo number
returned. The original memo blocks are made available for reuse (deleted).
Shrinking will not change the memo number, but unused blocks from the
shrink are made available for reuse.

If you want to change anything in the memo at MDP.memoNo, locate its
position within the memo with MDP.memoOffset and set the size in
MDP.memoBytes. The first data byte of a memo is located at MDP.offset=0.
There are 8 bytes of overhead per memo record (any number of blocks still
has only the 8 bytes of overhead), but these are transparent to any memo
access you do. The bytes at MDP.memoPtr overwrite the current memo data at
the position specified. For example, if you want to change the first 5
bytes of the first memo, set MDP.memoNo=1, MDP.memoPtr=yourNewData,
MDP.memoOffset=0, and MDP.memoBytes=5. On return, MDP.memoNo is going to
be the same as it was before the update, since you are not extending the
memo size in this example. Nothing further needs to be done; the memo is
updated.

If you want to add new memo data to an existing memo at MDP.memoNo, such as
adding another line item, or problem report paragraph, etc., set
MDP.memoOffset=theCurrentMemoSize (this locates to the end of the current
memo data), MDP.memoBytes=bytesYouWantToAppend, and MDP.memoPtr =
yourDataToAppend. If the old data size plus your newly added data still
fits inside the last memo block previously used, MDP.memoNo is returned the
same as it was on entry. However, if the new data requires that more
blocks be allocated, the entire memo is relocated to the next contiguous
block group that is large enough to store the data. That new block number
is returned in MDP.memoNo, and the old block number and all its blocks are
placed on the top of the avail-list.

If you want to shrink the size as reported by GET_MEMO_SIZE_XB from an
existing memo at MDP.memoNo, set MDP.memoBytes=newSizeYouWant, and
MDP.memoPtr=NULL. This means that you should have, before making this
shrink call, updated the memo data that occurs within this new size to be
the data size you want to be in the memo. For example, if you have 10 line
items, say, each 60 bytes long, and want to remove line item #5, you could
do it by reading all 10 line items to memory, moving line items #6 to 10
down one (so they are now line items #5 to 9, effectively removing old line
item #5), and update the memo (by using memoOffset=0 and memoBytes=9*60).

60

Bullet/2 API Reference

After this, though, you still have 10*60 bytes as the memo size (old line
item #10 is now at #9 and still at #10). Since you want the size to
reflect the real data in the memo, set MDP.memoBytes=90, MDP.memoPtr =
NULL, and update this memo number. Only the memo's size is affected by
this particular update. The size specified must be smaller than the
original size, or an error is returned.

It's recommended that a lock be in force on the DBF (full-lock). A record
lock should not be used if the update may result in blocks being moved, or
the memo being shrunk by a full block or more. A shared lock may not be
used since writing to the memo file, and to the DBF record if MDP.memoNo is
new, is required.

61

Mid-level Memo

DELETE_MEMO_XB

Uses MEMODATAPACK

IN OUT
MDP.func MDP.stat
MDP.dbfHandle
MDP.memoNo

The memo and all its blocks are made available for reuse.

Before using PACK_RECORDS_XB, you should run through all DBF records and
check for those records that are deleted (record.tag='*') to be sure that
any memo belong to those records are deleted from the memo file. If this
is not done, orphaned memo records -- those that do not have a DBF record
memo field pointing to it, may be left in the memo file (forever!).

After deleting a memo record, update the DBF record's memo field by writing
<SPACES> (ASCII 32) to the memo field member. Update this to disk with
UPDATE_RECORD_XB as soon as possible (and before unlocking). A memo field
with no current memo record is indicated by spaces ('0000000000' should
not be used).

It's recommended that a lock be in force on the DBF (full-lock). Neither a
record lock nor a shared lock may be used since writing to the memo file
header and the DBF record is required.

62

Bullet/2 API Reference

MEMO_BYPASS_XB

Uses MEMODATAPACK

IN OUT
MDP.func MDP.stat
MDP.dbfHandle
MDP.memoBypass

Memo files are created, opened, closed, and flushed/reloaded by their
corresponding DBF data file action. To perform these tasks asynchronously,
this routine is used. Bypass routines are:

MDP.memoBypass Value
BYPASS_CREATE_MEMO 1
BYPASS_OPEN_MEMO 2
BYPASS_CLOSE_MEMO 3
BYPASS_READ_MEMO_HEADER 4
BYPASS_FLUSH_MEMO_HEADER 5

All bypass routines require the handle of the DBF file that this memo is
for. Nothing is returned here, except the result code. The memo handle
from the open is stored internally, but is available by using STAT_DATA_XB
and checking SDP.memoHandle. However, none of the BULLET memo routines use
the memo handle directly; all access to the memo file is through the master
DBF file handle.

No data is required for input other than the DBF handle and memo bypass
routine to perform (see table above). All required info is obtained from
the DBF file's information. You may use an alternate block size, as set
via SET_SYSVARS_XB.

Generally, there is no need to call these routines using this bypass.
However, if you need to create a memo file anew (say, after the initial DBF
was created), and then open it, using these routines is the easiest way to
proceed.

Note: When creating a memo via the bypass method, the file ID is altered
to indicate that the DBF has a DBT memo file. The file ID is the first
byte of the DBF file. The ID is changed by OR'ing 0x88h with the current
file ID value. The next flush or close updates the disk image of the DBF
with the new file ID. The next DBF open, then, also opens the DBT memo
file created here. Be sure to always keep the DBT and DBF pairs in the
same directory, if moved.

Since the DBF file is already open (and must be to use any of these
routines), you must use the open bypass routine to open the memo if you
plan on using it. Either that, or close the DBF after you've create the
memo file, and simply re-open the DBF, which also, now, opens the DBT memo
file.

The other available bypass routines: close, read, and flush, typically will
not be used from this bypass routine. These operations are done

63

Mid-level Memo

automatically when their corresponding DBF action is performed, and have
little functionality used on their own.

Before using BYPASS_READ_MEMO_HEADER or BYPASS_FLUSH_MEMO_HEADER, it's
recommended that a lock be in force on the DBF (full-lock). A shared lock
can be used for BYPASS_READ_MEMO_HEADER, but it must be a full lock.

64

Bullet/2 API Reference

FIRST_KEY_XB

Uses ACCESSPACK

IN OUT
AP.func AP.stat
AP.handle AP.recNo
AP.keyPtr *AP.keyPtr

Retrieve the first key in index order from the index file.

This routine does not access the DBF file and so does not retrieve the data
record. What it does do is locate the first logical key of the index file,
returning it, and also returning the record number within the DBF that the
key indexes.

To retrieve the data record you can use the GET_RECORD_XB routine. The
preferred method, however, is to use GET_FIRST_XB, which combines these
operations.

The key returned includes an enumerator if the index file allows duplicate
keys.

This routine is typically used to position the index file to the first key
so as to allow forward in-order access to the keys by using NEXT_KEY_XB.

If an external data file was specified in CREATE_INDEX_XB, the record
number returned by this routine does not refer to a DBF record, but rather
is the value supplied when the key was stored. This permits index access
to your data files (data files which are not maintained by BULLET, but by
you).

65

Mid-level Index

EQUAL_KEY_XB

Uses ACCESSPACK

IN OUT
AP.func AP.stat
AP.handle AP.recNo
AP.keyPtr

Search for the exact key in the index file.

This routine does not access the DBF file and so does not retrieve the data
record. What it does do is search for the key in the index, and if found,
returns the record number within the DBF that the key indexes. The key
must be an exact match, including the enumerator word if the index file is
using non-unique keys.

To retrieve the data record you can use the GET_RECORD_XB routine. The
preferred method, however, is to use GET_EQUAL_XB, which combines these
operations.

This routine returns no key in *keyPtr since, by definition, you already
have the key in the key buffer if this routine succeeds.

This routine finds only an exact match to the specified key (including the
enumerator if applicable). However, even if the exact key is not found,
the index file is positioned so that a NEXT_KEY_XB retrieves the key that
would have followed the unmatched specified key. For example, if the key
to match were "KINGS" (a partial key, say, with \0\0 after the S),
EQUAL_KEY_XB would return a key not found error (since no exact match was
found). If you were to now do a NEXT_KEY_XB, the next key logically
ordered after "KINGS" would be returned. Let's say "KINGSTON" was the
next. That key value, including enumerator if any, and the key's record
number is returned from the NEXT_KEY_XB call. This technique lets you
position anywhere in the index file to narrow down any manual searches (for
instance, if you're looking for a key but aren't sure of the exact
spelling).

Note: When using the partial key technique shown above, be sure to set the
unspecified characters of the key to \0, or at least the two bytes
immediately following your search criterion. This for both unique and non-
unique index files. This is to ensure that the key located is the first
key matching your search criterion.

66

Bullet/2 API Reference

NEXT_KEY_XB

Uses ACCESSPACK

IN OUT
AP.func AP.stat
AP.handle AP.recNo
AP.keyPtr *AP.keyPtr

Retrieve the next key in index order from the index file.

This routine does not access the DBF file and so does not retrieve the data
record. What it does do is retrieve the next key of the index, returning
it, and also returning the record number within the DBF that the key
indexes.

To retrieve the data record you can use the GET_RECORD_XB routine. The
preferred method, however, is to use GET_NEXT_XB, which combines these
operations.

The key returned includes an enumerator if the index file allows
duplicates.

This routine is typically called after the index file has first been
positioned to a known key using either FIRST_KEY_XB or EQUAL_KEY_XB, or
after a previous NEXT_KEY_XB or even PREV_KEY_XB. What it basically does
is get the key following the current key, and then make that key the new
current key.

67

Mid-level Index

PREV_KEY_XB

Uses ACCESSPACK

IN OUT
AP.func AP.stat
AP.handle AP.recNo
AP.keyPtr *AP.keyPtr

Retrieve the previous key in index order from the index file.

This routine does not access the DBF file and so does not retrieve the data
record. What it does do is retrieve the previous key of the index,
returning it and also returning the record number within the DBF that the
key indexes.

To retrieve the data record you can use the GET_RECORD_XB routine. The
preferred method, however, is to use GET_PREV_XB, which combines these
operations.

The key returned includes an enumerator if the index file allows
duplicates.

This routine is typically called after the index file has first been
positioned to a known key using either
LAST_KEY_XB or EQUAL_KEY_XB, or after a previous PREV_KEY_XB or even
NEXT_KEY_XB. What it basically does is to get the key previous the current
key, and then make that key the new current key.

68

Bullet/2 API Reference

LAST_KEY_XB

Uses ACCESSPACK

IN OUT
AP.func AP.stat
AP.handle AP.recNo
AP.keyPtr *AP.keyPtr

Retrieve the last key in index order from the index file.

This routine does not access the DBF file and so does not retrieve the data
record. What it does do is locate the last key of the index, returning it,
and also returning the record number within the DBF that the key indexes.

To retrieve the data record you can use the GET_RECORD_XB routine. The
preferred method, however, is to use GET_LAST_XB, which combines these
operations.

The key returned includes an enumerator if the index file allows
duplicates.

This routine is typically used to position the index file to the last key
so as to allow reverse in-order access to the keys by using PREV_KEY_XB.

69

Mid-level Index

STORE_KEY_XB

Uses ACCESSPACK

IN OUT
AP.func AP.stat
AP.handle
AP.recNo
AP.keyPtr

Insert the key into the index file in proper key order.

This routine does not add the data record to the DBF file. It only inserts
the key and record number into the index file. Use INSERT_XB instead.

To do a complete data record and key insert, use ADD_RECORD_XB to add the
data record to the DBF,
BUILD_KEY_XB to construct the key, then STORE_KEY_XB to insert the key and
record number information into the index file. If that key already exists
and the file allows duplicate keys, attach the proper enumerator word and
retry STORE_KEY_XB. INSERT_XB does this automatically.

70

Bullet/2 API Reference

DELETE_KEY_XB

Uses ACCESSPACK

IN OUT
AP.func AP.stat
AP.handle AP.recNo
AP.keyPtr

Physically remove the specified key from the index file.

This routine requires an exact key match for all bytes of the key,
including the enumerator word if duplicate keys are allowed.

Typically, this routine would seldom be used since deleted DBF data records
are only physically deleted during a PACK_RECORDS_XB operating, after which
REINDEX_XB is done. It is useful if you are managing a transaction log and
need to back out changes made, beyond what BULLET performs. Also see
DEBUMP_RECORD_XB.

If you have non-unique keys (where DUPS_ALLOWED is true), you may have
several keys that match your criterion, and only differ in their
enumerator. To identify which key, then, goes to a particular DBF record,
compare that key's AP.recNo with the number of your DBF record. If they
are the same, then this key belongs to that record. Use either the KEY_XB
or the GET_XB routines, then, before using this routine. In other words,
use this routine only after you have identified exactly the key to delete,
and for the exact data record. Once you have the record number, you can
locate its key by using GET_KEY_FOR_RECORD_XB.

71

Mid-level Index

BUILD_KEY_XB

Uses ACCESSPACK

IN OUT
AP.func AP.stat
AP.handle *AP.keyPtr
AP.recPtr
AP.keyPtr

Build the key for the specified data record based on the key expression for
the index file. If the index file allows duplicate keys, a 0-value
enumerator is attached.

This routine, like most of the mid-level routines, typically would not be
used since the high-level access routines take care of this detail
automatically. If used, it normally would be used prior to STORE_KEY_XB.

This routine can be replaced. See Custom Build-Key Routine.

Note: If DUPS_ALLOWED, this routine always sets the enumerator to \0\0.
Enumerator management, which is used to guarantee a unique key, is
performed only when the INSERT_XB routine is used.

72

Bullet/2 API Reference

GET_CURRENT_KEY_XB

Uses ACCESSPACK

IN OUT
AP.func AP.stat
AP.handle AP.recNo
AP.keyPtr *AP.keyPtr

Retrieve the current key value for the specified index file handle and also
the data record number that it indexes. The key value includes the
enumerator if applicable.

This routine is useful in that it retrieves, on demand, the actual key
value of the last accessed key in the index file (and the data record
number associated with that key). STAT_INDEX_XB returns this information,
too.

73

Mid-level Index

GET_KEY_FOR_RECORD_XB

Uses ACCESSPACK

IN OUT
AP.func AP.stat
AP.handle *AP.keyPtr
AP.recNo
AP.recPtr
AP.keyPtr

Retrieve the key for the record/record number pair.

This routine would typically be used prior to using DELETE_KEY_XB and
DEBUMP_RECORD_XB. The key returned includes the enumerator if applicable.

This routine sifts through any duplicate keys (if UPS_ALLOWED) for the key
that matches the record/record number pair, and so requires both the actual
data record along with its physical record number (even if dups are not
allowed).

Typically this routine is extraneous; the key is available with a GET_XB
routine and so can be deleted from the information provided through normal
access.

This routine builds a key based on the supplied record at AP.recPtr and
searches the index for that key proper. If found, and if DUPS_ALLOWED,
each key matching the key proper has its record number compared to the
record number in AP.recNo. If that matches, too, then that is the exact
key being sought.

74

Bullet/2 API Reference

GET_FIRST_XB

Uses ACCESSPACK

IN OUT
AP.func AP.stat
AP.handle AP.recNo
AP.recPtr *AP.recPtr
AP.keyPtr *AP.keyPtr

Retrieve the first indexed key and its data record.

The key returned includes an enumerator if the index file uses non-unique
keys (DUPS_ALLOWED).

This routine is typically used to process a database in index order
starting at the first ordered key (and its data record). After processing
this first entry, subsequent in-order access of the database is achieved by
using GET_NEXT_XB, until the end of the database is reached, at which point
an error is returned.

This routine, like all the high-level GET_XB routines, fills in the
AP.recNo of the record accessed. In this case, it fills AP.recNo with the
record number pointed to by the first key. Since this is done upon each
GET_XB access, the AP pack is primed for an UPDATE_XB

75

High-level Index

GET_EQUAL_XB

Uses ACCESSPACK

IN OUT
AP.func AP.stat
AP.handle AP.recNo
AP.recPtr *AP.recPtr
AP.keyPtr

Search for the exact key in the index file and return its data record.

This routine finds only an exact match to the specified key (including the
enumerator if applicable). However, even if the exact key is not found in
the index file, the index file is positioned so that the next GET_NEXT_XB
retrieves the key that would have followed the unmatched specified key. In
this manner, a GET_GREATER_THAN_OR_EQUAL is easily performed. See also
EQUAL_KEY_XB.

This routine, like all the high-level GET_XB routines, fills in the
AP.recNo of the record accessed. In this case, it fills AP.recNo with the
record number pointed to by the matching key. Since this is done upon each
GET_XB access, the AP pack is primed for an UPDATE_XB

Note: When using the partial key technique as described in EQUAL_KEY_XB,
be sure to set the unspecified characters of the key to \0, or at least the
two bytes immediately following your search criterion. This for both
unique and non-unique index files.

76

Bullet/2 API Reference

GET_NEXT_XB

Uses ACCESSPACK

IN OUT
AP.func AP.stat
AP.handle AP.recNo
AP.recPtr *AP.recPtr
AP.keyPtr *AP.keyPtr

Retrieve the next indexed key and its data record.

The key returned includes an enumerator if the index file uses non-unique
keys (DUPS_ALLOWED).

This routine is typically called after the index file has first been
positioned to a known key using either
GET_FIRST_XB or GET_EQUAL_XB, or after a previous GET_NEXT_XB or even
GET_PREV_XB. What it basically does is get the key and data record
following the current key, and then makes that key the new current key.

This routine, like all the high-level GET_XB routines, fills in the
AP.recNo of the record accessed. In this case, it fills AP.recNo with the
record number pointed to by the next key (now the current key). Since this
is done upon each GET_XB access, the AP pack is primed for an UPDATE_XB.

77

High-level Index

GET_PREV_XB

Uses ACCESSPACK

IN OUT
AP.func AP.stat
AP.handle AP.recNo
AP.recPtr *AP.recPtr
AP.keyPtr *AP.keyPtr

Retrieve the previous indexed key and its data record.

The key returned includes an enumerator if the index file uses non-unique
keys (DUPS_ALLOWED).

This routine is typically called after the index file has first been
positioned to a known key using either
GET_LAST_XB or GET_EQUAL_XB, or after a previous GET_PREV_XB or even
GET_NEXT_XB. What it basically does is get the key and data record
preceding the current key, and then makes that key the new current key.

This routine, like all the high-level GET_XB routines, fills in the
AP.recNo of the record accessed. In this case, it fills AP.recNo with the
record number pointed to by the previous key (now the current key). Since
this is done upon each GET_XB access, the AP pack is primed for an
UPDATE_XB.

78

Bullet/2 API Reference

GET_LAST_XB

Uses ACCESSPACK

IN OUT
AP.func AP.stat
AP.handle AP.recNo
AP.recPtr *AP.recPtr
AP.keyPtr *AP.keyPtr

Retrieve the last indexed key and its data record.

The key returned includes an enumerator if the index file uses non-unique
keys (DUPS_ALLOWED).

This routine is typically used to process a database in reverse index order
starting at the last ordered key (and its data record). After processing
this last entry, subsequent reverse-order access of the database is
achieved by using GET_PREV_XB, until the top of the database is reached, at
which point an error is returned.

This routine, like all the high-level GET_XB routines, fills in the
AP.recNo of the record accessed. In this case, it fills AP.recNo with the
record number pointed to by the last key. Since this is done upon each
GET_XB access, the AP pack is primed for an UPDATE_XB

79

High-level Index

INSERT_XB

Uses ACCESSPACK

IN OUT
AP.func AP.stat
AP.handle AP.recNo
AP.recNo *AP.keyPtr
AP.recPtr
AP.keyPtr
AP.nextPtr

Append the data records to data files and build and insert the related keys
into all linked index files. (Alternate forms are possible.)

This routine is used to add new entries into a database. Up to 256 index
files may be inserted into per call, with up to 256 data files being added,
too, for a total of 512 files managed per single INSERT_XB call.

Note: Bullet comes in 100, 250, and 1024-file versions and so this routine
is able to use as many files as handles are still available.

If non-standard fields are used (i.e., non-char structure members to match
non-ASCII data fields in your non-standard DBF), then be aware that your
compiler more than likely will add padding to align on member-size
boundaries. This will result in a mis-match between your compiler
structure (rectype above) and your DBF structure (as described in
fieldList[]). To prevent this, place #pragma pack(1) / #pragma pack()
around your structures that BULLET uses. Consult your particular compiler
for alternate methods if it does not support #pragma pack.

Only index handles are listed in AP.handle. Each index file has associated
with it a data file, known internally to BULLET (the xbLink from OPEN_XB).
There may be more than one index file for a data file, but there is always
one data file per index handle specified in the list. In other words, you
can list five index files, each indexing the same xbLink data file, and
have BULLET perform an atomic insert of that list. Or, another possibility
is that you have a single index file, indexing a single data file. Or, you
can list 256 index files, each indexing a single data file (512 total
files).

This, and several other routines, are transaction-list-based. This means
that if a failure occurs prior to the routine's completion, all changes
made to the database by the routine will be backed-out, and the database
(data and index files) effectively restored to its original state.

If the routine failed to complete, the function return value is the number
(1-based) of the pack that caused the failure. A positive number indicates
the failure was from an index operation; a negative number indicates the
failure was from a data operation. In each case, the absolute value of the
return code is the list item that failed (the pack index). For example, if
five index handles are in the list (AP[0] to AP[4]), and an error occurred
on the last pack's index file, the return code would be positive 5,
indicating the fifth pack (AP[4]) failed. Since it was a positive 5, the

80

Bullet/2 API Reference

index file was being processed when the error occurred. Being processed
means not only physical access, but verification, etc. If the return code
was -5, then again, the error was in the fifth pack, but since it is
negative, the error occurred while processing the data file. In either
case, upon return, the database is effectively restored to the way it was
before the INSERT_XB call was made. Remedy the error, if possible, and
INSERT_XB again.

Each pack must include a separate key buffer. You must not share a common
key buffer. Doing so disables any chance of recovering the index files in
case of error, since it is in these buffers that BULLET places the newly
built keys, and it is from these that BULLET, upon an error condition,
deletes the keys (required for roll-back).

The enumerator is automatically set up by this routine, if required
(DUPS_ALLOWED and the key already exists with enumerator 0). It does this
by seeking the last possible enumerator value (0xFFFF) and then backing up
to the previous key. That key's enumerator is evaluated and incremented,
and used as this key's.

Specifying Files

As mentioned, only the index file handles are specified in AP.handle. Data
files are implicitly specified by their links to the index files, as
specified when the index file was opened (OP.xbLink). INSERT_XB can
process up to 256 index files per call. Since each index file requires a
data file, this means that up to 256 data files can be processed per call,
as well. Also possible is that all 256 index handles refer to the same,
single data file. Yet another possibility is that there is 1 index file,
and so 1 data file. The possibilities can include those and anything in
between.

Example: Specifying a single index file

The simplest form is where a single index handle is specified. This
implies a single data file, too. AccessPack setup for this is:

AP.func = INSERT_XB;
AP.handle = indexHandle;
AP.recNo = 0;
AP.recPtr = &recordStruct; // contents referred to below as *recordStruct
AP.keyPtr = keyBuffer;
AP.nextPtr = NULL;

A call to BULLET with the above does the following:

1. The data in *recordStruct is used as a new record that is appended to
the data file. The data file was linked to this index during the
index open, in OP.xbLink.

2. A key is built by BULLET, based on the data in *recordStruct, and that
key is inserted into the index file (AP.handle). Stored with the key
is the record number of the record added above.

81

High-level Index

Note: AP.recNo must be set to 0 prior to the call. Any positive number
results in an error (0x80000000, and negative numbers, may be used when
more than one AP pack is used - see below).

Upon return, if no error, the return code is 0. AP.recNo is set to the
physical record number in the data file that *recordStruct was placed. The
key that was stored, including any enumerator, is in *keyBuffer.

Upon return, and there was an error, the return code is either -1 or 1. If
-1, the error was caused during processing of the data file portion, and
the error code itself is in AP.stat. If +1, the error was caused during
processing of the index file, and the error code itself is in AP.stat, as
well. The return code is, as in all BULLET transaction-list routines, an
index of the AP pack that generated the error -- negative if a data file
error, positive if an index file error. Since this example has only the
single pack, only a -1 or +1 could be returned, or 0.

Note: If an error occurred after any part of the database had changed
(during this particular call), then any and all changes that were made are
backed-out, and the files restored to the same state as before the call.

Example: Specifying two index files for a single data file

Two index files, related to the same data file, would set AccessPack to:

AP[0].func = INSERT_XB;
AP[0].handle = indexHandle_0;
AP[0].recNo = 0;
AP[0].recPtr = &recordStruct;
AP[0].keyPtr = keyBuffer_0;
AP[0].nextPtr = AP[1];

AP[1].handle = indexHandle_1;
AP[1].recNo = 0x80000000;
AP[1].recPtr = &recordStruct;
AP[1].keyPtr = keyBuffer_1;
AP[1].nextPtr = NULL;

A call to BULLET with the above does the following:

1. The data in *recordStruct is used as a new record that is appended
(added) to the data file.

2. A key is built by BULLET, based on the data in *recordStruct, and that
key is inserted into the index file (AP[0].handle). Stored with the
key is the record number of the record added above.

3. A second key is built by BULLET, based on the data in *recordStruct,
and that key is inserted into the second index file (AP[1].handle).
Stored with the key is the record number of the record added above.

Note: The 0x80000000 in AP[1].recNo signifies that AP[1] is using the same
data record that was appended during processing of AP[0]. This results in
just the one data record being added. AP[1].recPtr must still, however,
point to the same data as AP[0].recPtr does.

82

Bullet/2 API Reference

Upon return, if no error, the return code is 0. AP[0].recNo is set to the
physical record number in the data file that *recordStruct was placed. The
key that was stored for the first index, including any enumerator, is in
the buffer at AP[0].keyPtr. AP[1].recNo is set to the same physical record
number as AP[0].recNo, except that the record number is negative: For
example, if AP[0].recNo is 22 on return, AP[1].recNo is -22 (the original
0x80000000 value is overwritten). The key that was stored for the second
index, including any enumerator, is in the buffer at AP[1].keyPtr.

Upon return, and there was an error, the return code can be -2, -1, 1, or
2. If negative, the error was caused during processing of that AP pack's
data file portion, and the error code itself is in AP[abs(rez)-1].stat
(where rez is the return code, and -1 since C arrays start at 0). If the
return code was positive, the error was caused during processing of that AP
pack's index file, and the error code itself is in AP[rez-1].stat, as well.
The return code is, as in all BULLET transaction-list routines, an index of
the AP pack that generated the error -- negative if a data file error,
positive if an index file error.

Note: If an error occurred after any part of the database had changed
(during this particular call), then any and all changes that were made are
backed-out, and the files restored to the same state as before the call.

Example: Specifying two index files for each of two different data files

Four total files: two index files related to one data file, and two other
index files related to another data file, would set AccessPack to:

AP[0].func = INSERT_XB;
AP[0].handle = indexHandle_0;
AP[0].recNo = 0;
AP[0].recPtr = &recordStruct_0;
AP[0].keyPtr = keyBuffer_0;
AP[0].nextPtr = AP[1];

AP[1].handle = indexHandle_1;
AP[1].recNo = 0x80000000;
AP[1].recPtr = &recordStruct_0;
AP[1].keyPtr = keyBuffer_1;
AP[1].nextPtr = AP[2];

AP[2].handle = indexHandle_2;
AP[2].recNo = 0;
AP[2].recPtr = &recordStruct_1;
AP[2].keyPtr = keyBuffer_2;
AP[2].nextPtr = AP[3];

AP[3].handle = indexHandle_3;
AP[3].recNo = 0x80000000;
AP[3].recPtr = &recordStruct_1;
AP[3].keyPtr = keyBuffer_3;
AP[3].nextPtr = NULL;

A call to BULLET with the above does the following:

83

High-level Index

1. The data in *recordStruct_0 is used as a new record that is appended to
the data file linked to the index file in AP[0].handle.

2. A key is built by BULLET, based on the data in *recordStruct_0, and
that key is inserted into the index file (AP[0].handle). Stored with
the key is the record number of the record added above, for _0.

3. A second key is built by BULLET, based on the data in *recordStruct_0,
and that key is inserted into the second index file (AP[1].handle).
Stored with the key is the record number of the record added above,
using *recordStruct_0.

4. The data in *recordStruct_1 is used as a new record that is appended to
the data file linked to the index file in AP[2].handle.

5. A third key is built by BULLET, based on the data in *recordStruct_1,
and that key is inserted into the index file (AP[2].handle). Stored
with the key is the record number of the record added above, for _1.

6. A fourth key is built by BULLET, based on the data in *recordStruct_1,
and that key is inserted into the fourth index file (AP[3].handle).
Stored with the key is the record number of the record added above,
using *recordStruct_1.

Note: The 0x80000000 in AP[1].recNo signifies that AP[1] is using the same
data record that was appended during processing of AP[0]. This results in
just the one data record being added. AP[1].recPtr must still, however,
point to the same data as AP[0].recPtr does. The same applies to AP[2]
and AP[3] (though different values, of course).

Upon return, if no error, the return code is 0. AP[0].recNo is set to the
physical record number in the data file that *recordStruct_0 was placed.
The key that was stored for the first index, including any enumerator, is
in the buffer at AP[0].keyPtr. AP[1].recNo is set to the same physical
record number as AP[0].recNo, except that the record number is negative:
For example, if AP[0].recNo is 22 on return, AP[1].recNo is -22 (the
original 0x80000000 value is overwritten). The key that was stored for the
second index, including any enumerator, is in the buffer at AP[1].keyPtr.
AP[2].recNo is set to the physical record number in the data file that
*recordStruct_1 was placed. The key that was stored for the third index,
including any enumerator, is in the buffer at AP[2].keyPtr. AP[3].recNo is
set to the same physical record number as AP[2].recNo, except that the
record number is negative: For example, if AP[2].recNo is 74 on return,
AP[3].recNo is -74 (the original 0x80000000 value is overwritten). The key
that was stored for the fourth index, including any enumerator, is in the
buffer at AP[3].keyPtr.

Upon return, and there was an error, the return code can be -4 to -1, or 1
to 4. If negative, the error was caused during processing of that AP
pack's data file portion, and the error code itself is in AP[abs(rez)-
1].stat (where rez is the return code, and -1 since C arrays start at 0).
If the return code was positive, the error was caused during processing of
that AP pack's index file, and the error code itself is in AP[rez-1].stat,
as well. The return code is, as in all BULLET transaction-list routines,
an index of the AP pack that generated the error -- negative if a data file
error, positive if an index file error.

84

Bullet/2 API Reference

Note: If an error occurred after any part of the database had changed
(during this particular call), then any and all changes that were made are
backed-out, and the files restored to the same state as before the call.

Example: Specifying two index files for two records in the same data file

Three files: two index files related to one data file, where two data
records are to be appended, would set AccessPack to:

AP[0].func = INSERT_XB;
AP[0].handle = indexHandle_0;
AP[0].recNo = 0;
AP[0].recPtr = &recordStruct_0;
AP[0].keyPtr = keyBuffer_0;
AP[0].nextPtr = AP[1];

AP[1].handle = indexHandle_1;
AP[1].recNo = 0x80000000;
AP[1].recPtr = &recordStruct_0;
AP[1].keyPtr = keyBuffer_1;
AP[1].nextPtr = AP[2];

AP[2].handle = indexHandle_0;
AP[2].recNo = 0;
AP[2].recPtr = &recordStruct_1;
AP[2].keyPtr = keyBuffer_2;
AP[2].nextPtr = AP[3];

AP[3].handle = indexHandle_1;
AP[3].recNo = 0x80000000;
AP[3].recPtr = &recordStruct_1;
AP[3].keyPtr = keyBuffer_3;
AP[3].nextPtr = NULL;

A call to BULLET with the above does the following:

1. The data in *recordStruct_0 is used as a new record that is appended to
the data file linked to the index file in AP[0].handle.

2. A key is built by BULLET, based on the data in *recordStruct_0, and
that key is inserted into the index file (AP[0].handle). Stored with
the key is the record number of the record added above, for _0.

3. A second key is built by BULLET, based on the data in *recordStruct_0,
and that key is inserted into the second index file (AP[1].handle).
Stored with the key is the record number of the record added above,
using *recordStruct_0.

4. The data in *recordStruct_1 is used as a new record that is appended to
the data file linked to the index file in AP[2].handle. Since
AP[2].handle is the same index file as that of AP[0].handle, this means
it's also the same data file as was just operated on above -- a second
data record is appended to the data file. The net effect of this
operation is to call INSERT_XB twice, once for one insert, then again
for the second. The difference is that the operation is atomic -- if
one fails, the other is not committed; it's an "all or nothing"
operation.

85

High-level Index

5. A third key is built by BULLET, based on the data in *recordStruct_1,
and that key is inserted into the index file (AP[2].handle). Stored
with the key is the record number of the record added directly above,
for _1. Note that this index file is the same as specified in
AP[0].handle.

6. A fourth key is built by BULLET, based on the data in *recordStruct_1,
and that key is inserted into the fourth index file (AP[3].handle).
Stored with the key is the record number of the record added above,
using *recordStruct_1.

The return ritual is as described above, for "Specifying two index files
each for two different data files".

Example: Specifying a single index file for a previously added data record

This form lets you insert a key without adding a data record. This would
be required if you were, for example, creating a temporary index of select
records in a data file (i.e., the data records already exist, you just want
to index them). AccessPack setup for this is:

AP.func = INSERT_XB;
AP.handle = indexHandle;
AP.recNo = -recordNumberOfExistingRecord;
AP.recPtr = &recordStruct;
AP.keyPtr = keyBuffer;
AP.nextPtr = NULL;

A call to BULLET with the above does the following:

A key is built by BULLET, based on the data in *recordStruct, and that key
is inserted into the index file (AP.handle). Stored with the key is the
absolute value of the record number specified in AP.recNo (which is set to
negative record number).

Upon return, if no error, the return code is 0. AP.recNo is changed to
abs(AP.recNo). The key that was stored, including any enumerator, is in
*keyBuffer. No data file access is made.

Upon return, and there was an error, the return code is either -1 or 1. If
-1, the error was caused during processing of the data file portion, and
the error code itself is in AP.stat. If +1, the error was caused during
processing of the index file, and the error code itself is in AP.stat, as
well. The return code is, as in all BULLET transaction-list routines, an
index of the AP pack that generated the error -- negative if a data file
error, positive if an index file error. Since this example has only the
single pack, only a -1 or +1 could be returned.

Note: If an error occurred after any part of the database had changed
(during this particular call), then any and all changes that were made are
backed-out, and the files restored to the same state as before the call.

An example use of this INSERT_XB feature is to create an ad hoc index of,
say, records marked as deleted. To do this, create a new index file (say,
with a key of NAME). Get each data record, by record number using

86

Bullet/2 API Reference

GET_RECORD_XB (for records 1 to number-of-records), and check the .tag
byte. If '*', call INSERT_XB with the negative value of AP.recNo. Do this
for every such marked record. After all records are processed, you have an
index of all deleted records in the data file. Delete the index when no
longer needed. That's just one example.

87

High-level Index

UPDATE_XB

Uses ACCESSPACK

IN OUT
AP.func AP.stat
AP.handle *AP.keyPtr
AP.recNo
AP.recPtr
AP.keyPtr
AP.nextPtr

Update any and all files in the transaction list if necessary, including
both index and data files.

This routine is used to update data records while also updating the index
files if a key field has changed due to data record updates. Up to 256
index files may be updated per call, as well as 256 data files, too, for a
total of 512 files managed per single UPDATE_XB call.

Only index handles are listed in AP.handle. Each index file has associated
with it a data file, known internally to BULLET (the xbLink from OPEN_XB).
There may be more than one index file for a data file, but there is always
one data file per index handle specified in the list. In other words, you
can list five index files, each indexing the same xbLink data file, and
have BULLET perform an atomic update of that list. Or, another possibility
is that you have a single index file, indexing a single data file. Or, you
can list 256 index files, each indexing a single data file (512 total
files).

This, and several other routines, are transaction-list-based. This means
that if a failure occurs prior to the routine's completion, all changes
made to the database by the routine will be backed-out, and the database
(data and index files) effectively restored to its original state.

If the routine failed to complete, the function return value is the number
(1-based) of the pack that caused the failure. A positive number indicates
the failure was from an index operation; a negative number indicates the
failure was from a data operation. In each case, the absolute value of the
return code is the list item that failed (the pack index). For example, if
five index handles are in the list(AP[0] to AP[4]), and an error occurred
on the last pack's index file, the return code would be positive 5,
indicating the fifth pack (AP[4]) failed. Since it was a positive 5, the
index file was being processed when the error occurred. Being processed
means not only physical access, but verification, etc. If the return code
was -5, then again, the error was in the fifth pack, but since it is
negative, the error occurred while processing the data file. In either
case, upon return, the database is restored to the way it was before the
UPDATE_XB call was made. Remedy the error, if possible, and UPDATE_XB
again.

Each pack must include a separate key buffer. You must not share a common
key buffer. Doing so disables any chance of recovering the index files in
case of error, since it is in these buffers that BULLET places any newly

88

Bullet/2 API Reference

built keys, and it is from these that BULLET, upon an error condition,
deletes these keys (required for roll-back).

The enumerator is automatically maintained by this routine, if required
(DUPS_ALLOWED and the key already exists with enumerator 0). The process
is the same as INSERT_XB's.

How an update works

All data records specified in the list are read from disk into memory,
except those with AP.recNo=0. Therefore, a memory allocation large enough
to store all unique data records is made upon entry to this routine (and
released at exit). For example, if the list includes two implicit data
files, and the record lengths of those two data files are 2048 and 4096
bytes, an allocation of 6K is made. In addition, 40KB more is allocated
for workspace. So, for this example, 46K is allocated (rounded up to 48KB,
the next 4KB page boundary). Since up to 256 unique records are possible,
where a unique record is identified by handle/record number, be aware of
the memory requirements if you are updating very large databases (e.g., 256
unique records, each 4KB in length, would have UPDATE_XB allocate a bit
over 1MB of memory for this call).

After the data records have been read from disk, each list-item is
processed, in order. The disk record image previously read is compared
with the record image at AP.recPtr. If the same, that item is skipped, and
the next item in the list is processed. If you know beforehand that that
record is the same, set that item's AP.recNo=0 so you can avoid having its
disk image read and stored (or do not include it in the list at all). If
the images differ, BULLET creates a key for the index file being processed,
for each record image (the original and the one in AP.recPtr). If the keys
generated are the same, no index file update is needed. If different, the
original key for that record is deleted from that index file, and the new
key inserted. Finally, the new record replaces the old, the new directly
overwriting the original. Note that the actual sequence of the update
event differs somewhat from this description in order to optimize the
process.

Specifying Files

As mentioned, only the index file handles are specified in AP.handle. Data
files are implicitly specified by their links to the index files, as
specified when the index file was opened (OP.xbLink). UPDATE_XB can
process up to 256 index files per call. Since each index file requires a
data file, this means that up to 256 data files can be processed per call
as well. Also possible is that all 256 index handles refer to the same,
single data file. Yet another possibility is that there is 1 index file,
and so 1 data file. The possibilities can include those and anything in
between.

Example: Specifying a single index file

The simplest form is where a single index handle is specified. This
implies a single data file, too. AccessPack setup for this is:

89

High-level Index

AP.func = UPDATE_XB;
AP.handle = indexHandle;
AP.recNo = recordToUpdate;
AP.recPtr = &recordStruct;
AP.keyPtr = keyBuffer;
AP.nextPtr = NULL;

A call to BULLET with the above does the following:

1. The data in *recordStruct is used as the new record that is to replace
the data record at AP.recNo. The data file was linked to this index
file (AP.handle) during the index open, in OP.xbLink.

2. If the record data in *recordStruct is the same as the original disk
record, nothing is done. If the data is new, the key fields are
compared to that belonging to the original disk record, and if the
same, only the record data is updated. If the new record's key differs
from the original's, the original key for this record is removed from
the index, and the new key inserted.

AP.recNo must be set to the record number that you are updating. Any
GET_XB routine (GET_EQUAL_XB, etc.) may be used to identify the number of a
data record. Key access has the obvious advantage of knowing the record
number of a specific key (for example, Betty Barbar's data). Any record
number, from 1 to number of records in the data file, can be used. In
addition, a negative record number can be used. This is treated exactly
the same as a positive record number (the absolute value is used). The
reason this is allowed is because INSERT_XB replaces 0x80000000 record
numbers with the negative value of the previous insert.

Upon return, if no error, the return code is 0. If the record data was
new, the key for that data record, including any enumerator, is in
*keyBuffer. This is so even if key fields had not changed.

Upon return, and there was an error, the return code is either -1 or 1. If
-1, the error was caused during processing of the data file portion, and
the error code itself is in AP.stat. If +1, the error was caused during
processing of the index file, and the error code itself is in AP.stat, as
well. The return code is, as in all BULLET transaction-list routines, an
index of the AP pack that generated the error -- negative if a data file
error, positive if an index file error. Since this example has only the
single pack, only a -1 or +1 could be returned.

Note: If an error occurred after any part of the database had changed
(during this particular call), then any and all changes that were made are
backed-out, and the files restored to the same state as before the call.

Example: Specifying two index files for a single data file

Two index files, related to the same data file, would set AccessPack to:

AP[0].func = UPDATE_XB;
AP[0].handle = indexHandle_0;
AP[0].recNo = recordToUpdate;
AP[0].recPtr = &recordStruct;

90

Bullet/2 API Reference

AP[0].keyPtr = keyBuffer_0;
AP[0].nextPtr = AP[1];

AP[1].handle = indexHandle_1;
AP[1].recNo = recordToUpdate;
AP[1].recPtr = &recordStruct;
AP[1].keyPtr = keyBuffer_1;
AP[1].nextPtr = NULL;

A call to BULLET with the above does the following:

1. The data in *recordStruct is used as the new record that is to replace
the data record at AP.recNo. The data file was linked to this index
file (AP.handle) during the index open, in OP.xbLink.

2. If the record data in *recordStruct is the same as the original disk
record, nothing is done. If the data is new, the key fields are
compared to that belonging to the original disk record, and if the same,
only the record data is updated. If the new record's key differs from
the original's, the original key for this record is removed from the
index, and the new key inserted.

3. The operation performed directly above is repeated, this time for the
second index file. The new record data, and the record number to
update are, for this particular example, the same.

AP.recNo must be set to the record number that you are updating. Each
AP[].recNo must be set to a valid record number, even if the record number
is the same as the previous AP[] pack's (the case where you have more than
one index file for a data file). BULLET knows if the record number
duplicates a number in a previous AP pack, and allocates resources for only
the first encounter of the data record. Subsequent encounters refer to the
first.

Upon return, if no error, the return code is 0. If the new and original
data records differ, the key for the new data record, including any
enumerator, is in the buffer at AP[0].keyPtr. This even if the key fields
did not change. The same applies to the second index, with the new data
key in AP[1].keyPtr.

Upon return, and there was an error, the return code can be -2, -1, 1, or
2. If negative, the error was caused during processing of that AP pack's
data file portion, and the error code itself is in AP[abs(rez)-1].stat
(where rez is the return code, and -1 since C arrays start at 0). If the
return code was positive, the error was caused during processing of that AP
pack's index file, and the error code itself is in AP[rez-1].stat, as well.
The return code is, as in all BULLET transaction-list routines, an index of
the AP pack that generated the error -- negative if a data file error,
positive if an index file error.

Note: If an error occurred after any part of the database had changed
(during this particular call), then any and all changes that were made are
backed-out, and the files restored to the same state as before the call.

Example: Specifying two index files for each of two different data files

91

High-level Index

Four total files: two index files related to one data file, and two other
index files related to another data file, would set AccessPack to:

AP[0].func = UPDATE_XB;
AP[0].handle = indexHandle_0;
AP[0].recNo = recordToUpdate_0;
AP[0].recPtr = &recordStruct_0;
AP[0].keyPtr = keyBuffer_0;
AP[0].nextPtr = AP[1];

AP[1].handle = indexHandle_1;
AP[1].recNo = recordToUpdate_0;
AP[1].recPtr = &recordStruct_0;
AP[1].keyPtr = keyBuffer_1;
AP[1].nextPtr = AP[2];

AP[2].handle = indexHandle_2;
AP[2].recNo = recordToUpdate_1;
AP[2].recPtr = &recordStruct_1;
AP[2].keyPtr = keyBuffer_2;
AP[2].nextPtr = AP[3];

AP[3].handle = indexHandle_3;
AP[3].recNo = recordToUpdate_1;
AP[3].recPtr = &recordStruct_1;
AP[3].keyPtr = keyBuffer_3;
AP[3].nextPtr = NULL;

A call to BULLET with the above does the following:

1. The data in *recordStruct_0 is used as the new record that is to replace
the data record at AP[0].recNo in the data file linked to the index file
in AP[0].handle.

2. If the record data in *recordStruct_0 is the same as the original disk
record, nothing is done. If the data is new, the key fields are
compared to that belonging to the original disk record, and if the same,
only the record data is updated. If the new record's key differs from
the original's, the original key for this record is removed from the
index, and the new key inserted.

3. The operation performed directly above is repeated, this time for the
second index file. The new record data, and the record number to
update, are for this particular example, the same.

4. The data in *recordStruct_1 is used as the new record that is to replace
the data record at AP[2].recNo in the data file linked to the index file
in AP[2].handle.

5. If the record data in *recordStruct_1 is the same as the original disk
record, nothing is done. If the data is new, the key fields are
compared to that belonging to the original disk record, and if the same,
only the record data is updated. If the new record's key differs from
the original's, the original key for this record is removed from the
index, and the new key inserted.

6. The operation performed directly above is repeated, this time for the
fourth index file. The new record data, and the record number to update
are, for this particular example, the same.

92

Bullet/2 API Reference

Upon return, if no error, the return code is 0. If the new and original
data records differ, the keys for the new data records, including any
enumerators, are in the buffers at AP[0].keyPtr to AP[3].keyPtr. This even
if the key fields did not change. If one, or all, of the new data records
matched the original data record, nothing is placed in *keyBuffer for that
index.

Upon return, and there was an error, the return code can be -4 to -1, or 1
to 4. If negative, the error was caused during processing of that AP
pack's data file portion, and the error code itself is in AP[abs(rez)-
1].stat (where rez is the return code, and rez-1 since C arrays start at
0). If the return code was positive, the error was caused during
processing of that AP pack's index file, and the error code itself is in
AP[rez-1].stat, as well. The return code is, as in all BULLET transaction-
list routines, an index of the AP pack that generated the error -- negative
if a data file error, positive if an index file error.

Note: If an error occurred after any part of the database had changed
(during this particular call), then any and all changes that were made are
backed-out, and the files restored to the same state as before the call.

Example: Specifying two index files for two records in the same data file

Three files: two index files related to one data file, where two data
records are to be updated, would set AccessPack to:

AP[0].func = UPDATE_XB;
AP[0].handle = indexHandle_0;
AP[0].recNo = recordToUpdate_0;
AP[0].recPtr = &recordStruct_0;
AP[0].keyPtr = keyBuffer_0;
AP[0].nextPtr = AP[1];

AP[1].handle = indexHandle_1;
AP[1].recNo = recordToUpdate_0;
AP[1].recPtr = &recordStruct_0;
AP[1].keyPtr = keyBuffer_1;
AP[1].nextPtr = AP[2];

AP[2].handle = indexHandle_0;
AP[2].recNo = recordToUpdate_1;
AP[2].recPtr = &recordStruct_1;
AP[2].keyPtr = keyBuffer_2;
AP[2].nextPtr = AP[3];

AP[3].handle = indexHandle_1;
AP[3].recNo = recordToUpdate_1;
AP[3].recPtr = &recordStruct_1;
AP[3].keyPtr = keyBuffer_3;
AP[3].nextPtr = NULL;

93

High-level Index

A call to BULLET with the above does the following:

1. The data in *recordStruct_0 is used as the new record that is to replace
the data record at AP[0].recNo in the data file linked to the index file
in AP[0].handle.

2. If the record data in *recordStruct_0 is the same as the original disk
record, nothing is done. If the data is new, the key fields are
compared to that belonging to the original disk record, and if the same,
only the record data is updated. If the new record's key differs from
the original's, the original key for this record is removed from the
index, and the new key inserted.

3. The operation performed directly above is repeated, this time for the
second index file. The new record data, and the record number to
update, are for this particular example, the same.

4. The data in *recordStruct_1 is used as the new record that is to replace
the data record at AP[2].recNo in the data file linked to the index file
in AP[2].handle. This is the same index file as the first AP pack, and
also the same data file. However, this is a different record number.

5. If the record data in *recordStruct_1 is the same as the original disk
record, nothing is done. If the data is new, the key fields are
compared to that belonging to the original disk record, and if the same,
only the record data is updated. If the new record's key differs from
the original's, the original key for this record is removed from the
index, and the new key inserted.

6. The operation performed directly above is repeated, this time for the
fourth index file. The new record data, and the record number to update
are, for this particular example, the same.

The return ritual is as described above, for "Specifying two index files
each for two different data files".

94

Bullet/2 API Reference

REINDEX_XB

Uses ACCESSPACK

IN OUT
AP.func AP.stat
AP.handle AP.recNo
AP.keyPtr *AP.keyPtr
AP.nextPtr

Reindex all files in the transaction list, re-evaluating the key expression
in the process.

This routine is used to reindex up to 256 index files per call. The index
files must already exist and be open. Any existing key values are
overwritten by new key data. In other words, if you have a 100MB index
file, REINDEX_XB uses the same file space, building new keys over old.
This results in a less fragmented disk and also minimizes disk space
needed. You can also create a new, empty index file and reindex to that.
This would be useful, for instance, if you needed to create a temporary
index file -- something that you'd use for a report, say, then delete after
the report. Another use for creating a new index file and reindexing to
that is to, after creating it (COPY_INDEX_HEADER_XB can be used), use
EXPAND_FILE_DOS and expand it to the expected size. This has the benefit
of ensuring that this file allocation is as contiguous as the file system
allows (without relying on OS/API-specific calls).

If the routine failed to complete, the function return value is the number
(1-based) of the pack that caused the failure. A positive number indicates
the failure was from an index operation; a negative number indicates the
failure was from a data operation (reading the data file). In each case,
the absolute value of the return code is the list item that failed (the
pack index). For example, if five index handles are in the list(AP[0] to
AP[4]), and an error occurred on the last pack's index file, the return
code would be positive 5, indicating the fifth pack (AP[4]) failed. Since
it was a positive 5, the index file was being processed when the error
occurred. Being processed means not only physical access, but
verification, etc. If the return code was -5, then again, the error was in
the fifth pack, but since it is negative, the error occurred while
processing the data file.

Unlike INSERT_XB & UPDATE_XB, each pack need not include a separate key
buffer; you may share a common key buffer. If duplicate keys are generated
in the reindex process and the sort function does not flag DUPS_ALLOWED, an
error is returned. The duplicate key is in *AP.keyPtr and the record
number it was generated from in AP.recNo. Since no roll-back is performed,
there is only a real need for a single key buffer. You may use separate
ones, too.

This routine creates a temporary work file in either the current directory
or, if the environment variable TMP is defined, in the directory pointed to
by TMP=. The path used for this temporary file may also be specified at
run-time by using the TMP_PATH_PTR item for SET_SYSVARS_XB. If
TMP_PATH_PTR is NULL (default), then TMP= is used, or if that is not found,

95

High-level Index

then the current directory is used. The size of this temporary file is, in
bytes, approximately (keylength+4) * number of records in the data file.
The resultant index files are, by default, optimized for minimum size and
maximum retrieval speed. This full-node packing leaves one empty key per
node, which means b-tree splitting will occur almost immediately upon
inserting data (with INSERT_XB, or STORE_KEY_XB).

This behaviour can be modified with the REINDEX_PACK_PCT item for
SET_SYSVARS_XB so that less packing is done. Less packing would improve
subsequent INSERT_XB performance since all nodes are not almost full as
they are with a full pack. File size and retrieval times increase, though,
but perhaps not noticeably.

During the reindex process, each record is checked for a matching skip-tag
value, as set in SET_SYSVARS_XB. The skip-tag is set to 0 by default,
where no check is done and keys for all records in the data file are
inserted into the index file.

96

Bullet/2 API Reference

LOCK_XB

Uses LOCKPACK

IN OUT
LP.func LP.stat
LP.handle
LP.xlMode
LP.dlMode
LP.recStart=0
LP.nextPtr

Lock all bytes of the files in the list for exclusive use by the current
process, and reload file headers from disk. LP.recStart must be 0 for each
pack.

This routine is used to lock the database for either exclusive use by this
process, or shared access (allowing any process to read, but not write, to
the files). Up to 256 index files may be locked per call, as well as 256
data files, too, for a total of 512 files per single LOCK_XB call. Shared-
access locking prevents all processes from writing to the file while a
shared lock is in force, including this process. To relock in exclusive
lock mode, without unlocking first, use: RELOCK_XB.

Only index handles are listed in AP.handle. Each index file has associated
with it a data file, known internally to BULLET (the xbLink from OPEN_XB).
There may be more than one index file for a data file, but there is always
one data file per index handle specified in the list. For example, you can
list five index files, each indexing the same xbLink data file, and have
BULLET perform an atomic lock of that list.

LP.xlMode is set to 1 to perform a shared lock on the index file. Set to 0
for an exclusive lock. A shared lock allows only reading.

LP.dlMode is set to 1 to perform a shared lock on the data file. Set to 0
for an exclusive lock. A shared lock allows only reading.

The lock mode (shared <-> exclusive) can be changed using RELOCK_XB.

Bullet maintains a per-handle lock count, and does a physical region lock
only upon the first lock request (or on a relock request). It is only on
this first lock request that the header is reloaded. When the lock count
returns to 0 (from UNLOCK_XB calls), it is at that time the header is
flushed, if required. Only full-locks are maintained in this way. The
number of outstanding locks can be determined from the SIP and SDP
structures, from the STAT_XB routines. Note that individual LOCK_INDEX_XB
and UNLOCK_INDEX_XB routines, as well as the data ones, also act upon this
lock count. Therefore, you can lock a file 100 times in a row, but only on
the first lock are any operations actually performed, and only on the last
unlock are any performed. Other lock/unlock calls (other than the first
lock or last unlock) simply increment or decrement the lock count for that
handle.

97

Network Level

This, and several other routines, are transaction-list-based. This means
that if a failure occurs prior to the routine's completion, all locks made
to the database by this routine will be unlocked.

If the routine failed to complete, the function return value is the number
(1-based) of the pack that caused the failure. A positive number indicates
the failure was from an index operation; a negative number indicates the
failure was from a data operation. In each case, the absolute value of the
return code is the list item that failed (the pack index). For example, if
five index handles are in the list(AP[0] to AP[4]), and an error occurred
on the last pack's index file, the return code would be positive 5,
indicating the fifth pack (AP[4]) failed. Since it was a positive 5, the
index file was being processed when the error occurred. Being processed
means not only physical access, but verification, etc. If the return code
was -5, then again, the error was in the fifth pack, but since it is
negative, the error occurred while processing the data file. In either
case, upon return, any files locked during this call are unlocked before
returning.

The advantage of using region locks (LOCK_XB locks entire file regions) to
control file access is that the file does not need to be opened/closed
using the Deny Read/Write sharing attribute. Opening the file for Deny
None, and controlling subsequent access with region locks, allows for
faster processing since files do not need to be constantly opened and
closed, as they would if access were controlled by opening with Deny
Read/Write.

Using the operating system to control access also prevents other processes
from accessing the files. Other methods, such as internal locking (such as
using 'L' in the tag field as a program-aware in-use flag), work fine so
long as each process accessing the files knows about this internal
"locking". However, since it's proprietary, other processes may not know
about it. Any locking system that is not commonly shared throughout the
system is not effective when it comes to preventing other processes from
corrupting files.

Note: Region locking prevents other processes from both writing and
reading the locked file. For operating systems that do not provide shared
locks, and read-access is required at all times, you may specify this type
access with the access-sharing mode when the BULLET file is opened. Once
opened for this (R/W, DenyWrite) then only the current process can write to
the file until it is closed. Other processes must open the file for Read-
Only access. For small networks (two or three nodes), this may be
suitable. Otherwise, region locking is much preferred, and very much
faster, since files do not have to be opened and closed every time the
access state needs to change.

98

Bullet/2 API Reference

UNLOCK_XB

Uses LOCKPACK

IN OUT
LP.func LP.stat
LP.handle
LP.recStart=0
LP.nextPtr

Unlock all bytes in the specified files (previously locked) and flush the
files' headers to disk (the flush is done before the locks are released).
Also unlock all bytes in the related data file and flush the data file
header to disk. LP.recStart must be 0 for each pack.

Note: If a shared-lock is active for this handle (as set by this process),
the flush is not performed. This because writing to the locked region is
not permitted (nor is the flush required since nothing could have been
changed).

If the routine failed to complete, the function return value is the number
(1-based) of the pack that caused the failure. A positive number indicates
the failure was from an index operation; a negative number indicates the
failure was from a data operation. In each case, the absolute value of the
return code is the list item that failed (the pack index). For example, if
five index handles are in the list(AP[0] to AP[4]), and an error occurred
on the last pack's index file, the return code would be positive 5,
indicating the fifth pack (AP[4]) failed. Since it was a positive 5, the
index file was being processed when the error occurred. Being processed
means not only physical access, but verification, etc. If the return code
was -5, then again, the error was in the fifth pack, but since it is
negative, the error occurred while processing the data file.

This routine does not attempt to re-lock those files unlocked successfully
if an error occurs in the transaction. If an error does occur (unlikely),
the remaining files must be manually unlocked with the UNLOCK_KEY_XB and
UNLOCK_DATA_XB routines.

Bullet maintains a per-handle lock count, and does a physical region lock
only upon the first lock request (or on a relock request). It is only on
this first lock request that the header is reloaded. When the lock count
returns to 0 (from UNLOCK_XB calls), it is at that time the header is
flushed, if required. Only full-locks are maintained in this way. The
number of outstanding locks can be determined from the SIP and SDP
structures, from the STAT_XB routines. Note that individual LOCK_INDEX_XB
and UNLOCK_INDEX_XB routines, as well as the data ones, also act upon this
lock count. Therefore, you can lock a file 100 times in a row, but only on
the first lock are any operations actually performed, and only on the last
unlock are any performed. Other lock/unlock calls (other than the first
lock or last unlock) simply increment or decrement the lock count for that
handle.

99

Network Level

LOCK_INDEX_XB

Uses LOCKPACK

IN OUT
LP.func LP.stat
LP.handle
LP.xlMode

Lock all bytes of the index file for exclusive use by the current process
and reload the index file's header from disk.

LP.xlMode is set to 1 to perform a shared lock. Set to 0 for an exclusive
lock. A shared lock allows only reading. The lock mode (shared <->
exclusive) can be changed using RELOCK_INDEX_XB.

Bullet maintains a per-handle lock count, and does a physical region lock
only upon the first lock request (or on a relock request). It is only on
this first lock request that the header is reloaded. When the lock count
returns to 0 (from UNLOCK_XB calls), it is at that time the header is
flushed, if required. Only full-locks are maintained in this way. The
number of outstanding locks can be determined from the SIP and SDP
structures, from the STAT_XB routines. Note that individual LOCK_INDEX_XB
and UNLOCK_INDEX_XB routines, as well as the data ones, also act upon this
lock count. Therefore, you can lock a file 100 times in a row, but only on
the first lock are any operations actually performed, and only on the last
unlock are any performed. Other lock/unlock calls (other than the first
lock or last unlock) simply increment or decrement the lock count for that
handle.

100

Bullet/2 API Reference

UNLOCK_INDEX_XB

Uses LOCKPACK

IN OUT
LP.func LP.stat
LP.handle

Unlock all bytes in the specified file (previously locked) and flush the
file's header to disk (the flush is done before the locks are released).

If the current lock state is shared, the flush is not performed.

Bullet maintains a per-handle lock count, and does a physical region lock
only upon the first lock request (or on a relock request). It is only on
this first lock request that the header is reloaded. When the lock count
returns to 0 (from UNLOCK_XB calls), it is at that time the header is
flushed, if required. Only full-locks are maintained in this way. The
number of outstanding locks can be determined from the SIP and SDP
structures, from the STAT_XB routines. Note that individual LOCK_INDEX_XB
and UNLOCK_INDEX_XB routines, as well as the data ones, also act upon this
lock count. Therefore, you can lock a file 100 times in a row, but only on
the first lock are any operations actually performed, and only on the last
unlock are any performed. Other lock/unlock calls (other than the first
lock or last unlock) simply increment or decrement the lock count for that
handle.

101

Network Level

LOCK_DATA_XB

Uses LOCKPACK

IN OUT
LP.func LP.stat
LP.handle
LP.dlMode
LP.recStart
LP.recCount

Lock all bytes of the data file specified in LP.handle for exclusive use by
the current process. It also reloads the data file header from disk. You
must set LP.recStart=0 to lock all bytes. To lock a single record, or a
set of contiguous records, set LP.recStart to the first record to lock and
LP.recCount to the number of records to lock.

Header re-loading is performed only if locking all bytes.

If LP.recStart is not 0, be aware that the header is not locked, nor is it
re-loaded. Also, maintaining a lock on the single record prevents any
other process from doing a full lock on that data file, thereby preventing
write access to the file from any other BULLET process using LOCK_XB, but
not necessarily preventing other applications from writing to that file.
That may or may not be good. It does not prevent other BULLET processes
from reading that file (except for that locked record).

Multiple single records are allowed, but each must then be unlocked
individually, in the same format (start, count) as the lock.

LP.dlMode is set to 1 to perform a shared lock. Set to 0 for an exclusive
lock. A shared lock allows only reading. The lock mode (shared <->
exclusive) can be changed using RELOCK_DATA_XB.

Bullet maintains a per-handle lock count, and does a physical region lock
only upon the first lock request (or on a relock request). It is only on
this first lock request that the header is reloaded. When the lock count
returns to 0 (from UNLOCK_XB calls), it is at that time the header is
flushed, if required. Only full-locks are maintained in this way. The
number of outstanding locks can be determined from the SIP and SDP
structures, from the STAT_XB routines. Note that individual LOCK_INDEX_XB
and UNLOCK_INDEX_XB routines, as well as the data ones, also act upon this
lock count. Therefore, you can lock a file 100 times in a row, but only on
the first lock are any operations actually performed, and only on the last
unlock are any performed. Other lock/unlock calls (other than the first
lock or last unlock) simply increment or decrement the lock count for that
handle.

102

Bullet/2 API Reference

UNLOCK_DATA_XB

Uses LOCKPACK

IN OUT
LP.func LP.stat
LP.handle
LP.recStart
LP.recCount

Unlock all bytes in the specified file handle (previously locked) and flush
the data file header to disk (the flush is done before the lock is
released). You must set LP.recStart=0 to unlock all bytes. To unlock a
single record, or a set of contiguous records, set LP.recStart to the first
record to unlock and LP.recCount to the number of records to unlock.

Header flushing is performed only if unlocking a full lock.

An unlock must exactly mimic its corresponding lock. This means if you
lock several records singly, you must unlock each of those records -- you
cannot use LP.recStart=0 to unlock singly-locked records.

Bullet maintains a per-handle lock count, and does a physical region lock
only upon the first lock request (or on a relock request). It is only on
this first lock request that the header is reloaded. When the lock count
returns to 0 (from UNLOCK_XB calls), it is at that time the header is
flushed, if required. Only full-locks are maintained in this way. The
number of outstanding locks can be determined from the SIP and SDP
structures, from the STAT_XB routines. Note that individual LOCK_INDEX_XB
and UNLOCK_INDEX_XB routines, as well as the data ones, also act upon this
lock count. Therefore, you can lock a file 100 times in a row, but only on
the first lock are any operations actually performed, and only on the last
unlock are any performed. Other lock/unlock calls (other than the first
lock or last unlock) simply increment or decrement the lock count for that
handle.

103

Network Level

CHECK_REMOTE_XB

Uses REMOTEPACK

IN OUT
RP.func RP.stat
RP.handle RP.isRemote

-or- RP.flags=0
RP.drive RP.isShare=1

If RP.handle is non-zero, determine if the specified handle of a file or
device is remote. If the handle is local (e.g., not a network file or
device), RP.isRemote returns 0, otherwise it is remote. RP.flags=0 and
RP.isShare=1 on return for either a handle or drive check under OS/2.

If RP.handle is zero, determine if the drive specified in RP.drive is
remote. Drive A: is 1, B: is 2, C: is 3, and so on. To check the default
drive use 0 (the default drive is the current drive). If the drive is
local (e.g., not a network drive), RP.isRemote returns 0, otherwise it is
remote.

The significance of the remote-ness is less important in a multitasking
environment since sharing of resources (files, in particular) must always
be managed, compared to single-tasking environments where, typically,
sharing (locking mechanisms) need only be performed when the resource is
able to be accessed by another process (i.e. is a 'network' drive). Note
that the resource need not be located elsewhere to be classified as remote:
Drives or devices or files on the same machine may be classified as remote
if the network software is redirecting local access (such as on a server).

Note: This routine is not mutex-protected.

104

Bullet/2 API Reference

RELOCK_XB

Uses LOCKPACK

IN OUT
LP.func LP.stat
LP.handle
LP.xlMode
LP.dlMode
LP.recStart=0
LP.nextPtr

Relock all bytes of the index files for the mode specified in LP.xlMode
(index files) and LP.dlMode (data files). Also relock all bytes in the
related data file. LP.recStart must be 0 for each pack.

Set LP.xlMode=1 to select a shared lock for the index file; set to 0 for an
exclusive lock. Set LP.dlMode=1 to select a shared lock for the data file;
set to 0 for an exclusive lock.

If the lock mode is from exclusive to shared, the file is flushed before
the shared state is set. BULLET maintains the current lock state and knows
which direction the lock is going in. The lock state (shared or exclusive)
can be determined by the SIP and SDP structures from the STAT_XB routines.
This routine does not affect the lock count, nor are the headers reloaded
(nor should they be).

The lock state is on a file handle basis, not on an LP[] pack basis. This
means the file, as identified by the handle, is in the lock state last set.

Note: The lock switch is made atomic: Rather than unlocking, and then
locking again in the new state, this performs all operations without the
possibility that another process can grab the lock away.

105

Network Level

RELOCK_INDEX_XB

Uses LOCKPACK

IN OUT
LP.func LP.stat
LP.handle
LP.xlMode

Relock all bytes of the index file for the mode specified in LP.xlMode.

Set LP.xlMode=1 to select a shared lock; set to 0 for an exclusive lock.
If the lock mode is from exclusive to shared, the file is flushed before
the shared state is set. BULLET maintains the current lock state and knows
which direction the lock is going in. The lock state (shared or exclusive)
can be determined by the SIP structure from the STAT_INDEX_XB routine.
This routine does not affect the lock count, nor is the header reloaded
(nor should it be).

Note: The lock switch is made atomic: Rather than unlocking, and then
locking again in the new state, this performs all operations without the
possibility that another process can grab the lock away.

106

Bullet/2 API Reference

RELOCK_DATA_XB

Uses LOCKPACK

IN OUT
LP.func LP.stat
LP.handle
LP.dlMode
LP.recStart
LP.recCount

Relock all bytes of the data file for the mode specified in LP.dlMode.

If the lock mode is from exclusive to shared, the file is flushed before
the shared state is set. BULLET maintains the current lock state and knows
which direction the lock is going in. The lock state (shared or exclusive)
can be determined by the SDP structure from the STAT_DATA_XB routine. This
routine does not affect the lock count , nor is the header reloaded (nor
should it be).

You must set LP.recStart=0 to lock all bytes. To lock a single record, or
set of contiguous records, set LP.recStart= record# to relock and
LP.recCount to the number of records to relock.

Multiple single records are allowed, but each must then be unlocked
individually, in the same format (start, count) as the lock.

Note: The lock switch is made atomic: Rather than unlocking, and then
locking again in the new state, this performs all operations without the
possibility that another process can grab the lock away.

107

CP Level

DELETE_FILE_DOS

Uses DOSFILEPACK

IN OUT
DFP.func DFP.stat
DFP.filenamePtr

Delete the specified file.

Note: OS/2 DosForceDelete is used so the file is not recoverable with the
UNDELETE command.

108

Bullet/2 API Reference

RENAME_FILE_DOS

Uses DOSFILEPACK

IN OUT
DFP.func DFP.stat
DFP.filenamePtr
DFP.newNamePtr

Rename a file. May also be used to move the file to a new directory within
the partition.

If the specified directory differs from the file's directory, the file's
directory entry is moved to the new directory.

For example, if the filenamePtr filename is /LP100/PROJ94A.INF and the
newFilenamePtr filename is /ARCH/PROJ93A.INA, the file is essentially
renamed and also moved to the /ARCH directory.

109

CP Level

CREATE_FILE_DOS

Uses DOSFILEPACK

IN OUT
DFP.func DFP.stat
DFP.filenamePtr
DFP.attr

Create a new file.

The specified filename/pathname must not already exist.

The file created is not left open. You must OPEN_FILE_DOS to use it.

The attribute used during the create can be:

Attribute Value Meaning
Normal 0 normal access permitted to file
Read-Only 1 read-only access permitted to file
Hidden 2 file does not appear in directory listing
System 4 file is a system file
SubDir 10h FILENAME is a subdirectory
Archive 20h file is marked for archiving

Note: Use MAKE_DIR_DOS to create a subdirectory.

110

Bullet/2 API Reference

ACCESS_FILE_DOS

Uses DOSFILEPACK

IN OUT
DFP.func DFP.stat
DFP.filenamePtr
DFP.asMode

Determine if the specified file can be accessed with the specified access-
sharing mode.

Basically, a Does-File-Exist routine. It uses the specified access-sharing
mode when trying to open the file. For example, if you specify DFP.attr =
0x0042 (R/W access + Deny None sharing) and issue ACCESS_FILE_DOS on a
Read-Only file, an error is returned. A sharing mode must be specified; it
cannot be left 0.

111

CP Level

OPEN_FILE_DOS

Uses DOSFILEPACK

IN OUT
DFP.func DFP.stat
DFP.filenamePtr DFP.handle
DFP.asMode

Open the file with the access-sharing mode, returning the handle on
success.

112

Bullet/2 API Reference

SEEK_FILE_DOS

Uses DOSFILEPACK

IN OUT
DFP.func DFP.stat
DFP.handle DFP.seekTo
DFP.seekTo
DFP.method

Position the file pointer of the file to the seekTo position based on the
method specified.

The position is a 32-bit value and is relative to either the start of the
file, the current file pointer position, or the end of the file.

Method Meaning
0 start move from start of file (offset is a 32-bit unsigned value)
1 start move at the current position (offset a signed value)
2 start move at the end of file (offset a signed value)

For example, to move to the last byte of a sector (512th byte, but offset
511), set the offset value to 511 and use Method 0. On return, the
absolute offset value of the new position is returned. This return value
is useful with Method 2 since you can specify an offset of 0 and have the
file length returned. To move to the start of the file, use method 0,
offset 0. To move to the first byte of the second sector, use offset 512.

Note: Never position the file pointer to before the start of file.

113

CP Level

READ_FILE_DOS

Uses DOSFILEPACK

IN OUT
DFP.func DFP.stat
DFP.handle DFP.bytes
DFP.bytes
DFP.bufferPtr

Read from the file or device the specified number of bytes into a buffer.

On block devices (such as disks) input starts at the current file position
and the file pointer is repositioned to the last byte read +1.

It is possible to read less than the bytes specified without an error being
generated. Compare the bytes to read with the returned bytes read value.
If less then end of file was reached during the read. If 0 then file was
already at EOF.

114

Bullet/2 API Reference

EXPAND_FILE_DOS

Uses DOSFILEPACK

IN OUT
DFP.func DFP.stat
DFP.handle
DFP.bytes

Expands the file by the number of bytes beyond its current size.

This routine is useful in pre-allocating disk space. By reserving disk
space in advance you can guarantee that enough disk space will be available
for a future operation (especially if more than 1 process is running).
You'll also be able ensure that the disk space that a file does use is as
contiguous as possible.

Database systems are dynamic and their files typically allocate new space
on an as-needed basis. This dynamic allocation can cause parts of a file
to be located throughout the disk system, possibly affecting performance
drastically. By pre-allocating the disk space you can be assured of
consistent throughput performance since the file is contiguous.

115

CP Level

WRITE_FILE_DOS

Uses DOSFILEPACK

IN OUT
DFP.func DFP.stat
DFP.handle DFP.bytes
DFP.bytes
DFP.bufferPtr

Write to the file or device the specified number of bytes from a buffer.

If the number of bytes written is less than the specified bytes, this
routine returns an error.

On block devices (such as disk) output starts at the current file position,
and the file pointer is repositioned to the last byte written +1.

Note: If the specified bytes to write is 0, the file is truncated at the
current file pointer position.

116

Bullet/2 API Reference

CLOSE_FILE_DOS

Uses DOSFILEPACK

IN OUT
DFP.func DFP.stat
DFP.handle

Close the file flushing any internal buffers, releasing any locked regions,
and updating the directory entry to the correct size, date, and time.

117

CP Level

MAKE_DIR_DOS

Uses DOSFILEPACK

IN OUT
DFP.func DFP.stat
DFP.filenamePtr

Create a new subdirectory.

118

Bullet/2 API Reference

COMMIT_FILE_DOS

Uses DOSFILEPACK

IN OUT
DFP.func DFP.stat
DFP.handle

Flushes the OS system buffers for the handle, and updates the directory
entry for size.

119

Bullet Error Codes

Bullet Error Codes

Bullet error codes are numbered so that they do not overlap OS error codes.
The first general Bullet error number is 8193, but Bullet also returns
select system error code numbers instead of duplicating system codes (those
listed below less than 8192). In addition, if the error is reported by the
OS (for example, attempting to access a locked file), then the OS error in
returned by Bullet. For a list of OS errors, see OS/2 Dos API Errors in
the online manual.

System/General Error Codes

8 EXB_NOT_ENOUGH_MEMORY
cannot get memory requested

38 EXB_UNEXPECTED_EOF
unexpected end-of-file where bytes requested for read exceeded EOF

39 EXB_DISK_FULL
disk full on WriteFile

80 EXB_FILE_EXISTS
cannot create file since it already exists

8192+ EXB_OR_WITH_FAULTS
1=flush failed on handle close
2=free memory failed on handle close
4=failed memo handle close (data handle only)

During a CLOSE_XB routine, the close process continues regardless of
errors, and so the errors are accumulated. For example, 8193 means the
flush failed, and 8195 means both the flush and the free failed
(8192+1+2=8195). If the error occurred in the actual DosClose() API call,
only that error is returned (it will be an OS error code).

8300 XB_ILLEGAL_CMD
function not allowed

8301 EXB_OLD_DOS
OS version < MIN_DOS_NEEDED

8302 EXB_NOT_INITIALIZED
init not active, must do INIT_XB before using Bullet

8303 EXB_ALREADY_INITIALIZED
init already active, must do EXIT_XB first

8304 EXB_TOO_MANY_HANDLES
more than 1024 opens requested, or more than license permits (100,
250, 1024)

8305 EXB_SYSTEM_HANDLE
Bullet won't use or close handles 0-2

120

Bullet/2 API Reference

8306 EXB_FILE_NOT_OPEN
the handle is not a Bullet handle, including the handle supplied in
OP.xbLink

8307 EXB_FILE_IS_DIRTY
tried to reload header but current still dirty flush the file before
reloading the header

8308 EXB_BAD_FILETYPE
attempted to do a key file operation on non-key file, or a data
operation on a non-data file

8309 EXB_TOO_MANY_PACKS
too many INSERT, UPDATE, REINDEX, LOCK_XB packs (more than 512)

8310 EXB_NULL_RECPTR
null record pointer passed to Bullet (.recPtr==NULL)

8311 EXB_NULL_KEYPTR
null key pointer passed to Bullet (.keyPtr==NULL)

8312 EXB_NULL_MEMOPTR
null memo pointer passed to Bullet (.memoPtr==NULL)

8313 EXB_EXPIRED
evaluation time period has expired, reinstall if time remaining

8314 EXB_BAD_INDEX
Query/SetSysVars index selection is beyond the last one

8315 EXB_RO_INDEX
SetSysVars index item is read-only

8316 EXB_FILE_BOUNDS
file size > 4GB, or greater than the SetSysVars value

Multi-access Error Codes

8401 EXB_BAD_LOCK_MODE
lock mode (LP) not valid, must be 0 or 1

8402 EXB_NOTHING_TO_RELOCK
cannot relock without existing full-lock

8403 ERR_SHARED_LOCK_ON
unlikely error, write access needed for flush, but lock is shared

Index Error Codes

8501 EXB_KEY_NOT_FOUND
exact match of key not found

121

Bullet Error Codes

8502 EXB_KEY_EXISTS
key exists already and dups not allowed

8503 EXB_END_OF_FILE
already at last index order

8504 EXB_TOP_OF_FILE
already at first index order

8505 EXB_EMPTY_FILE
nothing to do since no keys

8506 EXB_CANNOT_GET_LAST
cannot locate last key

8507 EXB_BAD_INDEX_STACK
index file is corrupt

8508 EXB_BAD_INDEX_READ0
index file is corrupt

8509 EXB_BAD_INDEX_WRITE0
index file is corrupt

8521 EXB_OLD_INDEX
incompatible Bullet index, use ReindexOld subroutine, if available

8522 EXB_UNKNOWN_INDEX
not a Bullet index file

8523 EXB_KEY_TOO_LONG
keylength > 62 (or 64 if unique), or is 0

8531 EXB_PARSER_NULL
parser function pointer is NULL

8532 EXB_BUILDER_NULL
build key function pointer is NULL

8533 EXB_BAD_SORT_FUNC
CIP.sortFunction not valid (not 1-6, or a custom sort-compare)

8534 EXB_BAD_NODE_SIZE
CIP.nodeSize is not 512, 1024, or 2048

8535 EXB_FILENAME_TOO_LONG
CIP.filenamePtr->pathname greater than file system allows

This error is detected only for the file system installed, and does not
detect using pathnames greater than 80 on a FAT system if HPFS is
installed. The OS returns its own error in this case, after the fact.

122

Bullet/2 API Reference

8541 EXB_KEYX_NULL
key expression is effectively NULL

8542 EXB_KEYX_TOO_LONG
CIP.keyExpPtr->expression is greater than 159 bytes

8543 EXB_KEYX_SYM_TOO_LONG
fieldname/funcname in expression is longer than 10 chars

8544 EXB_KEYX_SYM_UNKNOWN
fieldname/funcname in expression is unknown or misspelled

8545 EXB_KEYX_TOO_MANY_SYMS
too many symbols/fields used in expression (16 max)

8546 EXB_KEYX_BAD_SUBSTR
invalid SUBSTR() operand in expression

8547 EXB_KEYX_BAD_SUBSTR_SZ
SUBSTR() exceeds field's size

8548 EXB_KEYX_BAD_FORM
didn't match expected symbol in expression (missing paren, etc.)

8551 EXB_NO_READS_FOR_RUN
unlikely error, use different reindex buffer size to fix

8552 EXB_TOO_MANY_RUNS
unlikely error, too many runs (64K or more runs)

8553 EXB_TOO_MANY_RUNS_FOR_BUFFER
unlikely error, too many runs for run buffer

8554 EXB_TOO_MANY_DUPLICATES
more than 64K "identical" keys since the last enumerator used was
0xFFFF -- if ever you have this error, REINDEX_XB should be used to
resequence the enumerators

8561 EXB_INSERT_RECNO_BAD
AP.recNo cannot be > 0 if inserting with INSERT_XB

8562 EXB_PREV_APPEND_EMPTY
no previous append for INSERT_XB yet AP.recNo==0x80000000

8563 EXB_PREV_APPEND_MISMATCH
previous append's xbLink does not match this -- if this pack's
AP.recNo=0x80000000 then this pack's AP.handle must be the same
handle as that of the last pack that added a record

123

Bullet Error Codes

8564 EXB_INSERT_KBO_FAILED
could not back out key at INSERT_XB

8565 EXB_INSERT_DBO_FAILED
could not back out data records at INSERT_XB

8571 WRN_NOTHING_TO_UPDATE
all AP.recNo=0 at UPDATE_XB so nothing to do

8572 EXB_INTERNAL_UPDATE
internal error UPDATE_XB, not in handle/record# list

8573 EXB_FAILED_DATA_RESTORE
could not restore original data record (*)

8574 EXB_FAILED_KEY_DELETE
could not remove new key (*)

8575 EXB_FAILED_KEY_RESTORE
could not restore original key(*)

(*) original error, which forced a back-out, has been replaced by this
error -- this error is always returned in the first AP.stat (-1 on data, 1
on index)

Data Error Codes

8601 EXB_EXT_XBLINK
xbLink handle is not an internal DBF, as was specified during the
index file's creation -- the Bullet routine called requires a Bullet
DBF data file (instead use index-only access methods like
NEXT_KEY_XB).

8602 EXB_FIELDNAME_TOO_LONG
fieldname is > 10 characters

8603 EXB_RECORD_TOO_LONG
record length is > 64K

8604 EXB_FIELD_NOT_FOUND
fieldname not found in descriptor info

8605 EXB_BAD_FIELD_COUNT
fields <= 0 or >= MAX_FIELDS; also use of a field number which is
beyond the last field

8606 EXB_BAD_HEADER
bad header (reclen=0, etc.)

8607 EXB_BUFFER_TOO_SMALL
buffer too small (pack buffer < record length)

124

Bullet/2 API Reference

8608 EXB_INTERNAL_PACK
internal error in PackRecords

8609 EXB_BAD_RECNO
record number=0 or > records in data file header, or pack attempt on
empty data file

8610 WRN_RECORD_TAGGED
record's tag field matches skip tag

Memo Error Codes

8701 WRN_CANNOT_OPEN_MEMO
the DBF header has bits 3 & 7 set, which indicates that a memo file
is attached to this DBF, but the DBT memo file failed to open -- the
DBF open continues, with this warning code returned

8702 EXB_MEMO_NOT_OPEN
no open memo file for operation

8703 EXB_BAD_BLOCKSIZE
memo blocksize must be at least 24 bytes

8704 EXB_MEMO_DELETED
memo is deleted

8705 EXB_MEMO_PAST_END
memo data requested is past end of record

8706 EXB_BAD_MEMONO
memo number is not valid

8707 EXB_MEMO_IN_USE
memo add encountered likely corrupt memo file -- avail list indicates
this memo record is deleted, but the memoAvail link for the memo
indicates it is use (memoAvail link==0x8FFFF)

8708 EXB_BAD_AVAIL_LINK
memo avail link cannot be valid (e.g., memoAvail==0)

8709 EXB_MEMO_ZERO_SIZE
memo data has no size (size is 0)

8710 EXB_MEMO_IS_SMALLER
memo attempt to shrink but memo size is already <= size requested

125

Specifications

SPECIFICATIONS

Following contains:

OS/2 API Calls Made

Bullet Memory Usage

IX3 File Format

DBF File Format

DBT File Format

Custom Sort-Compare Function

Custom Build-Key

Custom Expression Parser

126

Bullet/2 API Reference

OS/2 API Calls Made

The following are the API calls made by Bullet.

DosAllocMem DosClose DosCopy
DosCloseMutexSem DosCreateDir DosCreateMutexSem
DosDelete (*) DosErrClass DosExitList
DosForceDelete DosFreeMem DosGetDateTime
DosMapCase DosOpen DosQueryCollate
DosQueryCp DosQueryCtryInfo DosQueryCurrentDisk
DosQueryFSAttach DosQueryHType DosQuerySysInfo
DosMove DosRead DosReleaseMutexSem
DosRequestMutexSem DosResetBuffer DosScanEnv
DosSetFileLocks DosSetFilePtr DosSetFileSize
DosSetMaxFH DosSetRelMaxFH DosWrite

(*) DosForceDelete is used in favor of DosDelete.

127

Specifications

Bullet Memory Usage

Memory is committed when allocated, using the PAG_COMMIT and the PAG_WRITE
flags. This is memory allocated by Bullet itself. Additional memory needs
are made by your code, such as parameter pack data, key buffers, and data
record buffers.

Code

Bullet uses 7 pages for code, or less than 28KB.

Data

o Shared Data

A single page of shared memory is used by all Bullet processes.

o Instance Data

One page of private memory is used by each Bullet processes.

o Handle Data

One page of private memory is used by each open Bullet index file. For
open data files, one page of private memory is used for files with 121 or
fewer fields. Two pages are used for files with 249 or fewer fields.
Three pages are used for files with 250 or more fields.

For example, if one machine is running 2 Bullet processes, each with 10
open data files with 12 fields each, and 10 index files (one for each data
file), its total memory usage is:

Total code is 28KB.
Shared data is 4KB.
Instance data is 2 processes * 4KB, or 8KB (plus INIT_XB use shown below).
DBF file data is 2 * 10 files * 4KB, or 80KB.
Index file data is 2 * 10 files * 4KB, or 80KB.

Total memory committed by Bullet for the above is 200KB, plus code and data
of your two applications (or your single application, if the same
application is being run twice). With no files open, for example when
starting your program, only 40KB is committed. Thereafter, 4KB per open
file. The memory is freed when the file is closed.

128

Bullet/2 API Reference

o Temporary Data

Additional memory is allocated on a temporary basis, where the allocation
is requested on entry to, and is freed upon exiting from, the routine
called. INIT_XB's allocation can be considered permanent since INIT_XB is
usually not exited until the program has ended. The following are the
routines and the single requested amount:

Routine Memory Allocated, in KB

INIT_XB 8 for 1024 MAX_FILES version; 4KB for 100 and 250
MAX_FILES versions

BACKUP_FILE_XB 8
CREATE_DATA_XB 4 for 1-121 fields, 8 for 122-249 fields, 12 for 250+

fields
CREATE_INDEX_XB 4
PACK_RECORDS_XB adjustable, 128 default (less if file is smaller)
REINDEX_XB adjustable, 144 default (minimum size is 48KB)
UPDATE_XB varies: 40 + sum of record lengths where AP[].recNo!=0

o Stack Data

Stack requirements are 8KB minimum for Bullet. No single stack allocation
requests more than 4KB at a time (i.e. all changes to ESP (the CPU stack
pointer) are less than 4KB at any one time), but some routines nest and
require up to the minimum 8KB in total. The minimum recommended stack size
for your Bullet application is 16KB. It's likely that you need to use a
much larger size for your main program's stack use. If you have any doubt
about stack space, double it, twice even.

129

Specifications

IX3 File Format

The IX3 index file is composed of a header followed by node data. The
header layout is detailed below, followed by the node format.

Index Header

// nnn, where nnn is the offset of that item relative to the start of the
file

CHAR fileID[4]; // 000 file id = '31ch'
ULONG nodeSize; // 004 size of a node, in bytes
ULONG rootNode; // 008 root node (1-based)
ULONG noKeys; // 012 total number of keys
ULONG availNode; // 016 next avail node (link to, 0 if none, 1-based)
ULONG freeNode; // 020 next free node
ULONG keyLength; // 024 length of key
ULONG maxKeys; // 028 maximum number of keys on a node
ULONG codePage; // 032 code page from CreateIndexFile
ULONG countryCode; // 036 country code from CreateIndexFile
ULONG sortFunction; // 040 system (1-9) or custom (10-19)

// high word has flags: bit0=1 dups allowed
// bit1-15 rez

// Translated key expression as done by Parser during CreateIndex/Reindex.
// More details on this is in the Custom Expression Parser Specifications.
// For each key part in KH.expression a 4-byte structure is used in XLATEX:

typedef struct _XLATEX {
CHAR ftype; // fld type (C,N,L, etc.),if bit7=1 and C then do UPPER key
CHAR length; // bytes to use starting at offset (never > 64)
SHORT offset; // offset into data rec that length bytes are to be used

} XLATEX;

ULONG xlateCount; // 044 number of key fields (64/4=16 max fields)
XLATEX xlateExpression[16]; // 048 key construct info (16 dword's worth)
CHAR miscWorkspace[236]; // 112-347 B-tree workspace
CHAR expression[160]; // 348 key expression, user (0-Terminated)
ULONG CTsize; // 508 size of collate table following
CHAR collateTable[256]; // 512 collate table, fill at CreateIndexXB
CHAR rez[256]; // 768 to 1023 reserved (header size=1024 bytes)

Node Data

Directly after the header the node data starts. Each node is either 512,
1024, or 2048 bytes long. Each node contains a key count, indicating the
number of active keys on the node, followed by key data.

// nnn, where nnn is offset of that item relative to the start of the node

CHAR keyCount; // 000 1 to maxKeys (in header above)
ULONG backNode; // 001 prev node page, or 0 if this node is a leaf
XNODE node[maxKeys]; // 005...

130

Bullet/2 API Reference

For each key on the node:

typedef struct _XNODE {
CHAR keyValue[keyLength]; // 005 actual key (keyLength from header)
ULONG recordNo; // 005+keyLength record number for key
ULONG fwdNode; // 005+keyLength+4 next node page, or 0 if
leaf
} XNODE;

backNode and fwdNode are node numbers. The first node is 1, and is located
directly after the header. The last node used is at header:freeNode-1.
Each fwdNode of a key is also the next key's backNode. If the node has
had all keys removed, its node number is placed on the top of the
header:availNode list, and the first 4 bytes of the node are used as a link
to the previous list top.

131

Specifications

DBF File Format

The DBF data file is composed of a header, field descriptors, one per
field, and the actual record data. The header layout is detailed below,
followed by the field descriptor layout and then the description of the
data record.

DBF Header

// nnn, where nnn is offset of that item relative to the start of the file

CHAR fileID; // 000 file id byte
CHAR lastUpdateYR; // 001 binary year-1900
CHAR lastUpdateMO; // 002 binary month (1-12)
CHAR lastUpdateDA; // 003 binary day (1-31)
ULONG noRecords; // 004 total number of records
SHORT headerLength; // 008 length of data header
SHORT recordLength; // 010 record length
SHORT nada; // 012 reserved
CHAR xactionFlag; // 014 flag incomplete dBASE xaction (n/a)
CHAR encryptFlag; // 015 flag indicating encrypted (n/a)
CHAR filler[16]; // 016 fill to 32 bytes

Field Descriptors

For each field, a descriptor is stored in the DBF. The first descriptor
starts directly after the header, at file offset 32 (the 33rd byte). Each
descriptor is 32 bytes. After the last descriptor, a byte with ASCII value
13 (0x0D) is stored. Following this byte, the record data starts.

// nnn, where nnn is offset of item relative to the start of the descriptor

CHAR fieldName[11]; // 000 ASCII, UPPER, underscore, zero-filled, (0T)
CHAR fieldType; // 011 UPPER C,N,D,L,M
ULONG fieldDA; // 012 not used
CHAR fieldLength; // 016 1-255 bytes, depending on fieldType
CHAR fieldDC; // 017 places right of decimal point
SHORT altFieldLength; // 018 alternate field length when fieldLength==0
CHAR filler[12]; // 020 not used

// altFieldLength is proprietary to Bullet, and can be used if Xbase
// compatibility is not required and fields need to be larger than 255
// bytes. To use it, set fieldLength=0 and altFieldLength to > 255 bytes.

Record Data

The DBF data are free-form, fixed-length records. Each data record starts
with a one-byte 'tag' field, which is implicitly defined for all records
(hence, it is not a formal field and has no descriptor). Following the tag
field is the first field of the record, and following that field (whose
length is described in the field's descriptor) is the next field, and so
on. No separators are used between fields. After the very last data
record in the file, DBF specification dictates that an end of file marker
be placed, so at the end of the file is a byte of value ASCII 26 (0x1A).

132

Bullet/2 API Reference

Record layout is as you define in your application. It must match the
layout as described in the field descriptors, byte-for-byte.

Increasing DBF Performance

Records are stored in the order they were written. To improve performance,
especially indexed-sequential access, the data file may be sorted, or
clustered, by reading each record in primary key order, then writing that
record to a new DBF data file. Repeat for each record. After all records
have been written, reindex the newly created DBF data file (and all related
index files). After this, delete the old files (data and index), and
rename the new ones to the filenames required. This technique maximizes
cache efficiency, and can easily offer 10x performance increase in access
speed.

133

Specifications

DBT File Format

The DBT memo file is composed of a header followed by memo data, stored in
one or more blocks. The header layout is detailed below, followed by the
memo record.

DBT Header

// nnn, where nnn is offset of that item relative to the start of the file

ULONG memoAvailBlock; // 000 next available block (header is block 0)
ULONG memoRez; // 004 not used
CHAR memoFilename[8]; // 008 filename proper (first 8 of filename proper)
ULONG memoRez2; // 016 not used (apparently)
ULONG memoBlockSize; // 020 block size, must be at least 24

// the rest of the header block (to block size bytes) is unused

Memo Record

// nnn, where nnn is offset of item relative to start of the memo record

ULONG memoAvail; // 000 next available link
ULONG memoSize; // 004 size of data (including this and memoAvail)
CHAR memoData; // 008 for as many bytes as memoSize, less 8

A memo may use one or more blocks (each block is a fixed size), but
allocations are always contiguous. Unused bytes after the memo data (to
the end of the last block allocated to that memo record) are undefined.
memoAvail is 0x8FFFF for all active memo records. For deleted memo
records, memoAvail is used as a link in the memoAvail list. memoSize is
the total bytes used by the memo, including the memoAvail and memoSize
data, so it is the size of the real data + 8 bytes.

134

Bullet/2 API Reference

Custom Sort-Compare Function

Bullet provides 10 custom sort-compare functions, in addition to the 6
intrinsic sort-compare functions (ASCII, NLS, and the four integer
compares). The custom function you supply is not actually a sort function,
as the name implies, but a compare function. Basically, two strings are
supplied and your function determines string1's relation to string2 (<, >,
or ==).

The strings supplied (via pointers) are not C strings, and they are not
(necessarily) 0-terminated. A count value is passed, indicating the number
of bytes to compare. The handle of the index file for which this compare
is being done is also supplied, so that you can interrogate the index file
state (STAT_INDEX_XB) for any additional information required.

In addition to the compare function this routine performs, a special-case
call is made to this routine requesting a pointer to a string of HIGH-
VALUES for this sort compare. The pointer must be to a static memory area
that exists for as long as the index file is open, and must be at least as
long as count. This special-case call is indicated by both string
pointers==NULL.

To use a custom sort-compare function, first use SET_SYSVARS_XB to assign
the custom sort ID (10 to 19) with the function's address pointer. Once
assigned, an index file may be created with its CIP.sortFunction set to the
sort ID (10-19). Also, any previously created index file with a custom
sort ID may now be opened (but only after you used SET_SYSVARS_XB to assign
the custom sort-compare function pointer). During the index file create,
the sort ID you specified for the create is stored in the index file. When
that index file is later opened, that same sort ID is used, and so requires
that the custom sort-compare function already be assigned (with
SET_SYSVARS_XB) before opening the index file. This means that you need to
be consistent in your custom sort ID numbering, since each index created
forever uses that sort ID you specified.

It's simple to create a custom sort-compare function. The calling
convention is APIENTRY (or _System, or __syscall for some compilers), and
the parameters are passed to your function on the stack (by Bullet). A
sample prototype for a custom sort-compare function follows:

LONG APIENTRY YourCustomSort10(PVOID str1,
PVOID str2,
ULONG count,
ULONG handle);

If the pointers are not NULL, your routine is to compare str1 to str2, for
count bytes, and is to return:

-1 if str1 is less than str2
0 if str1 is equal to str2
1 if str1 is greater than str2

str is not a C string, but is of type void. Cast as required, depending on
the data expected.

135

Specifications

If str1 and str2 are both NULL, your routine must return a pointer to a
static object that contains high-values for the object type. For example,
if the sort-compare is for IEEE floating-point, then the function is to
return a pointer to a static data area filled with the highest floating-
point value. Depending on your sort-compare routine's functionality, you
may need just a single high-value, or multiple high-values, one after the
other (e.g., if you are supporting compound key values for binary keys).
The count parameter indicates the total bytes needed, so divide by the
object size to get the number of objects required. Be aware that the
object size (in count) is +2 bytes for the enumerator if DUPS_ALLOWED was
specified when the index file was created. This high-values object is used
in the REINDEX_XB routine, and also the LAST_KEY_XB and GET_LAST_XB
routines.

136

Bullet/2 API Reference

Custom Build-Key

Bullet provides an internal build-key routine that constructs the key from
the data record supplied. The internal routine can be overloaded by your
custom build-key routine if you need additional functionality. It may be
used in conjunction with a custom sort-compare function, or an intrinsic
Bullet sort-compare.

Developing a custom build-key routine requires delving into the internal
Bullet data structures. It is more complicated than a custom sort-compare
function, but not really any more complex. The handle of the index file is
passed, and using this, STAT_INDEX_XB is called to get the SIP.herePtr
pointer. This is the pointer to the internal Bullet data structure for
this index file. What needs to be accessed in this structure is the
translated key expression. From this, you have the starting offset in the
data record, and the byte count to use, for each key component (up to 16
components per key). The offset value as stored in the XLATEX structure
does not include the tag field byte. Therefore, to locate to the correct
offset, add 1 to the value in offset. For example, XLATEX.offset=0 means
to use the first field, which is the first byte after the tag field byte,
but the physical offset, as referenced to recPtr, is not at offset=0, but
is at offset=1.

This translated key expression structure is:

// (This is an excerpt from the IX3 header format)

// Translated key expression as done by Parser during CreateIndex/Reindex.
// More details on this is in the Custom Expression Parser Specifications.
// For each key part in KH.expression a 4-byte structure is used:

typedef struct _XLATEX {
CHAR ftype; // fld type (C,N,L, etc.),if bit7=1 and C then do UPPER key
CHAR length; // bytes to use starting at offset (never > 64)
SHORT offset; // offset into data record that length bytes are to be used

} XLATEX; // (note that offset does not count tag field byte)

ULONG xlateCount; // 044 number of key fields (64/4=16 max flds)
XLATEX xlateExpression[16]; // 048 key construct info (16 dword's worth)

xlateExpression is at offset +48 relative the IX3 index header. However,
SIP.herePtr points to -384 relative the IX3 index header start. Therefore,
to locate to xlateExpression, you must add 384 to 48. This means that
xlateExpression[0].ftype is located at SIP.herePtr+432. The number of
valid key components in xlateExpression is stored in xlateCount (at
SIP.herePtr+428).

137

Specifications

The calling convention for your custom build-key function is APIENTRY (or
_System, or __syscall for some compilers), and the parameters are passed to
your function on the stack (by Bullet). A sample prototype for a build-key
function follows:

ULONG APIENTRY YourBuildKey(ULONG handle,
PVOID recordPtr,
PVOID keyPtr,
PULONG keyLenPtr
PULONG sortFuncPtr);

Using the data from xlateExpression, you are to build a key from the data
record located at the passed pointer, recordPtr, and are store the built
key in the buffer located at keyPtr. For each key component, you copy from
the data record xlateExpression[].length bytes starting at
xlateExpression[].offset+1 (given the 1-byte tag field which is not
accounted for otherwise), and build other key components after previously
build parts. If the index file allows duplicate keys (DUPS_ALLOWED is
flagged in SIP.sortFunction), then append an enumerator to the end of the
key proper. The handle of the index file is passed, which is used when
calling STAT_INDEX_XB (to get SIP.herePtr). The return is 0 if successful,
or an appropriate Bullet error code (EXB_) should be used. In addition,
the key length is placed in the ULONG data pointed to by keyLenPtr
(SIP.keyLength may be used), and the sort-compare function is placed in the
ULONG data pointed to by sortFuncPtr (SIP.sortFunction may be used).

The routine is also to check if the tag field of the data record matches
the skip tag value as set by SET_SYSVARS_XB. If the tag field matches,
WRN_SKIP_KEY is to be returned as the 'error' code. The key is built
regardless of a match.

138

Bullet/2 API Reference

Custom Expression Parser

Bullet provides an internal key expression parser routine that constructs
the translated key expression stored in the index file header. The
internal routine can be overloaded by your custom expression parser routine
if you need additional functionality. It may be used in conjunction with a
custom sort-compare function, with a custom build-key routine, or with an
intrinsic Bullet sort-compare.

Developing a custom expression parser routine requires delving into the
internal Bullet data structures. It is more complicated than a custom sort
function, and it is also much more complex. Unlike the custom sort-compare
and build-key functions, no handle is passed to the parser. This is
because, rather than using the handle to get the SIP.herePtr, this pointer
is passed directly to this routine. This is the pointer to the internal
Bullet data structure for this index file. What needs to be accessed in
this structure is the translated key expression location, as well as the
text version of the key expression, as supplied by the programmer/user. To
the XLATEX data you place the starting offset in the data record, and the
byte count to use, for each key component you parse from the key expression
(up to 16 components per key). The offset value as stored in the XLATEX
structure does not include the tag field byte. Therefore, the correct
offset to store is the physical offset within the record, minus 1. For
example, XLATEX.offset=0 should be used for the offset of the first field,
which is the first byte after the tag field byte. For each component
parsed, an XLATEX data structure is added to the xlateExpression data area
(up to 16). Unused XLATEX components must be set to 0. When all
components have been stored, the xlateCount value is set to the number of
key components stored.

DHDptr is the data header pointer. It is -352 bytes relative the DBF data
header. However, rather than using absolute addressing to locate field
descriptor data (needed for parsing), it's recommended that the DBF handle
be obtained from the KHptr structure. Since no file handles are passed,
you must read the xbLink handle value from the index file header. The
xbLink handle is stored at KHptr+12. With this handle, you call the
GET_DESCRIPTOR_XB routine to obtain field descriptor info for each field.

Translated key expression structure and text expression location is at:

// (This is an excerpt from the IX3 header format)
// Translated key expression as done by Parser during CreateIndex/Reindex.
// For each key part in KH.expression a 4-byte structure is used:

typedef struct _XLATEX {
CHAR ftype; // fld type (C,N,L, etc.),if bit7=1 and C then do UPPER key
CHAR length; // bytes to use starting at offset (never > 64)
SHORT offset; // offset into data record that length bytes are to be used

} XLATEX; // (note that offset does not count tag field byte)

ULONG xlateCount; // 044 number of key flds (64/4=16 max fields)
XLATEX xlateExpression[16]; // 048 key construct info (16 dword's worth)

: // 112-347 :
CHAR expression[160]; // 348 key expression, user (0-Terminated)

139

Specifications

xlateExpression is at offset +48 relative the IX3 index header. However,
KHptr, passed to this routine, points to -384 relative the IX3 index header
start. Therefore, to locate to xlateExpression, you must add 384 to 48.
This means that xlateExpression[0].ftype is located at KHptr+432. The
number of valid key components in xlateExpression is stored in xlateCount
(at KHptr+428). To text key expression string, which you are to parse, is
located at KHptr+732. This is identical to the expression passed during
CREATE_INDEX_XB (and it is CREATE_INDEX_XB that calls this
parser routine).

The calling convention for your custom expression parser function is
APIENTRY (or _System, or __syscall for some compilers), and the parameters
are passed to your function on the stack (by Bullet). A sample prototype
for a build-key function follows:

ULONG APIENTRY YourKeyExpressionParser(PVOID DHDptr,
PVOID KHptr,
PULONG keyLenPtr);

You are to parse the text key expression at KHptr+732 and store the key
component XLATEX structure values to the XLATEX structure, one for each key
component parsed. In addition, the key length (the sum of the
XLATEX.length fields) is placed in the ULONG data pointed to by keyLenPtr.
The keylength may not exceed 64 bytes. If DUPS_ALLOWED is flagged, add two
to the sum of the XLATEX.length fields for the enumerator word.

Note: The key expression has been mapped to upper-case and 0-filled by the
time this routine is called.

This is probably the most difficult part of customizing Bullet. However,
the difficulty lies not with Bullet, but how you parse. The idea is simple
-- you are to generate a xlateCount value, and for each key component
(i.e., non-contiguous, non-same-type run in the data record), an
XLATEX variable describing the method to build that key component out of
the data record (type, length, and starting offset) is stored. The text
key expression is available in the index header, and the destination to
write to is there, also. You do need to read the index header at KHptr+12
(ULONG) to obtain the DBF handle for this index file before you can parse
the expression. This because you need to know about the record field
names, types, and lengths before you can parse the key expression. The
matter not covered here is that of parsing the expression, which is left to
the programmer. Any lexical parser algorithm may be used, or you may even
do no parsing at all, and simply hard-code values into the XLATEX
structures.

If you've gotten this far, you may find the following data structures
useful. The numbers at // nnn are offsets relative the SIP.herePtr and
SDP.herePtr pointers. For example, at SIP.herePtr+352 is a ULONG of the
number of key searches requested. These could be monitored in a separate
thread.

140

Bullet/2 API Reference

Relative SIP.herePtr:

ULONG fType; // 000 bit0=0 for index file, btree
ULONG flags; // 004 bit0=1 is dirty

// bit1=1 full lock (count stored in
KH.lockCount)

// bit2=1 shared lock (if bit1=1)
// bit3-14 reserved (=0)
// bit15=1 no coalesce on key delete
// 006 BYTE, progress of reindex (0,1-99)
// 007 BYTE

PVOID morePtr; // 008 ptr to more header info, if ever needed
ULONG xbLink; // 012 related XB data file handle
ULONG asMode; // 016 access-sharing-cache mode of open
CHAR filename[260]; // 020 filename at open (0T)
ULONG currKeyRecNo; // 280 current rec number assigned to KH.currKey
CHAR currKey[64]; // 284 current key value
ULONG rez0; // 348 allow for 0-terminated string
ULONG searches; // 352 keys searched for
ULONG seeks; // 356 nodes seeked
ULONG hits; // 360 seeks satisfied without disk access
ULONG keysDeleted; // 364 keys deleted since last zeroed
ULONG keysStored; // 368 keys added since last zeroed
ULONG nodesSplit; // 372 splits needed on insert since last zeroed
ULONG nodesMadeAvail; // 376 nodes made available from deleting keys
ULONG lockCount; // 380 active full-lock count

// the IX3 index header follows at 384+

141

Specifications

Relative SDP.here:

ULONG fType; // 000 bit0=1 for DBF data file, XB
ULONG flags; // 004 bit0=1 is dirty

// bit1=1 full lock
// bit2=1 shared lock (if bit1=1)
// bit3-15 reserved (=0)
// 006 BYTE, progress of pack (0,1-99)
// 007 BYTE, 0

PVOID morePtr; // 008 ptr to more header info, if ever needed
ULONG noFields; // 012 number of fields in this data file
ULONG asMode; // 016 access-sharing-cache mode of open
CHAR filename[260]; // 020 filename at open (0T)
ULONG lockCount; // 280 only when dec'ed to 0 do full unlock
ULONG memoAvailBlock; // 284 next available block (header is block 0)
ULONG memoUnk1; // 288 not used
CHAR memoFilename[8]; // 292 filename proper (first 8 of filename proper)
ULONG memoUnk2; // 300 not used (apparently)
ULONG memoBlockSize; // 304 blk size, must be at least 24 to cover hdr!
ULONG memoHandle; // 308 handle of open memo file
ULONG memoFlags; // 312 bit0=1 is dirty
ULONG memoLastNo; // 316 last accessed memo number (if not 0)
ULONG memoLastLink; // 320 link data for last accessed memo
ULONG memoLastSize; // 324 size of last accessed memo (in bytes, w/OH)
ULONG align32[6]; // 328 (align to even32)

// the DBF data header follows at +352

142

Bullet/2 API Reference

License Agreement

Before using this software, BULLET/2 (or simply, BULLET) you must agree to
the following:

1. A BULLET/2 license grants you the right to use the BULLET/2 library code
on a royalty-free basis according to the terms of this License
Agreement.

2. You are not permitted to operate more than one copy of this software
package at one time per license. For example, if you have ten
programmers that have access to the BULLET/2 package at the same time,
you are required to have ten BULLET/2 licenses.

3. There is no restriction on the number of users you may support, and no
restriction on the number of different end-user programs you may
distribute that use BULLET/2. You may allow any number of simultaneous
users to use your end-user program.

4. The dynamic link library, BULLET2.DLL, may be distributed with your end-
user program. No other BULLET product may be distributed without
permission (for example, you may not distribute Bullet's import library,
BULLET2I.LIB).

5. You are not permitted to distribute non-executable code containing
BULLET/2 code. This means that may not redistribute BULLET/2 with your
program if your program can be used by other programmers to develop
executable code. BULLET/2 must be part of an end-user product only.
This means that you cannot provide an overlay or other such external
code containing BULLET/2 code if that code is to be used as a
programming library for other programmers, from which the other
programmers can create programs. If you require distributing a non-end-
user package containing BULLET/2, you must obtain written permission
from the author. This limitation pertains to the distribution of
BULLET/2 library code. You may, however, develop and distribute your
programmer package (i.e., non-end-user) as you wish, but you may not
distribute BULLET/2 library code with that package without written
permission. For example, you may develop class libraries that use the
BULLET/2 library code, and distribute those tools that you have written,
but you may not include BULLET/2 library code, or BULLET/2 activation
methods, in that package. The programmer using your package would need
a BULLET/2 license to make use of your package.

6. The static link library, BULLET2.LIB, may not be distributed except in
executable form as a component in your executable program (EXE).
BULLET2.LIB may not be placed into a DLL. BULLET2.LIB, if part of your
license/Option, may only be linked directly to your end-user program.
BULLET2.LIB is available with Option C licenses only.

7. Shareware use is limited to 28 days, and for the sole purpose of
evaluating the software. The BULLET/2 library code may not be
distributed in any form without a registered BULLET/2 license. A
BULLET/2 license is obtained only with purchase of a BULLET package,
purchased from an authorized BULLET distributor (see Order Information
in the online manual, or the !ORDER.FRM and !ORDER.CC files).

8. A BULLET license is specific to the option level purchased. License
holders with a lower Option may not use any higher level Option code.
For example, if you find another product using the Option C DLL, and you
have an Option A license, you are not permitted to use the Option C DLL

143

License Agreement

in your development, nor may you distribute any code that is not part of
your Option level.

9. Your end-user program using the BULLET/2 DLL is required to be a
copyrighted work, and must contain a valid copyright notice in the form,

'Program-name Copyright (C)Year Your-Name', or similar. No notice of
BULLET's copyright need be further specified in your program (in other
words, you don't need to mention BULLET, but you may if you wish). This
applies only if you distribute the BULLET/2 DLL with your product.
Programs that are linked using the BULLET2.LIB static link library need
not display a copyright notice. In other words, if you must distribute
to the Public Domain, where no copyright is desired for your program,
you must link using the static link library, and not the DLL.

10. BULLET/2 is owned by the author, Cornel Huth, and is protected by United
States copyright laws and international treaty provisions. You are not
permitted to make copies of this software except for archival purposes.

11. You may not rent or lease BULLET/2. You may not transfer this license
without the written permission of the author. If this software is an
update or upgrade, you may not sell or give away previous versions.

12. You may not reverse engineer, decompile, or disassemble this software if
the intent or result is to alter the software.

13. There are no expressed or implied warranties with this software.
14. All liabilities in the use of this software rest with the user.
15. Government Restricted Rights. This software is provided with restricted

rights. Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at 52.227-7013. The
software is owned by Cornel Huth/6402 Ingram Rd/San Antonio Texas
78238/USA. This agreement is governed by the laws of the Great State of
Texas, the United States of America, and all other countries of Earth.

Any questions concerning this License Agreement should be directed to me at
any of the addresses listed under Product Support.

Note: Failure to comply with any part of this License Agreement
immediately terminates any and all licenses that you may have to use
BULLET/2.

144

Bullet/2 API Reference

Installation

Installation instructions are located in the README text file included with
your package.

145

Product Support

Product Support

Support for licensed users is available at my BBS, The 40th Floor, 7 days a
week. Hours are 5pm to 9am, Central Time (USA, -0600 GMT (-0500 April-
October). Weekend BBS hours are 24 hours (5pm Friday to 9am Monday).
Hours other than above are voice. A fax can be sent during the times the
BBS is operating. Limited technical support for licensed users is also
available through e-mail (see e-mail address below). Please use the Bug
Report Form when reporting possible bugs.

Note: Technical support is reserved for licensed users. Those evaluating
Bullet are supported for the Bullet installation only. Complete support is
available once you register.

BBS: +1(210)684-8065 (times listed above), N-8-1

The latest in-version (2.x) release of BULLET/2 is always available for
free download by registered users ($10- by mail). Bugs, if re-creatable,
are fixed within 24 hours. Also available at the BBS are other shareware
try-before-you-buy products by me, such as the DOSX32/Win/NT versions of
Bullet; the Ruckus/DOS soundcard toolkit; the linear programming optimizer
LP; interesting 'Specs', and more still. Current shareware versions are
available at several sites, with the FTP site listed below being the
primary distribution point.

My E-mail address:

cornel@crl.com
(FTP) ftp.crl.com /users/co/cornel
(WWW) ftp://ftp.crl.com/users/co/cornel

146

Bullet/2 API Reference

Bug Report Form

When requesting support for possible bug(s) you must follow these steps
(always use the current version of the software, and read the product
Bulletin/Errata if available):

1. Include a complete problem description.
2. Include sample source of the problem, if necessary (99 lines or less).
3. Include necessary data files, include files, etc. (no 3rd-party

DLL/LIBs).
4. Include step-by-step procedure to follow in order to recreate the

problem.

Once done, ZIP it up and upload to the appropriate conference (or to the e-
mail address, in uuencoded form). There, leave a summary and the filename
of the ZIP uploaded (or e-mail message). Tech support does not start on
reports unless all steps above are completed. All files must be included,
including the Bullet DLL you are using, header files, etc., so that a
compile can be done in an empty directory without changes (no paths added,
etc.).

The goal is for you to minimize the possibility that the bug is in fact
your doing. The best way to ensure this is to remove all extraneous
source, and to isolate the problem to a specific sequence of operations.
It must be done in 99 lines or less. If the problem is recreated, it is
fixed within 24 hours.

Note: For non-bug reports, compose your query and post to the conference
(or e-mail). Off-line composing is recommended. See the Main Board
Bulletin for exact details (if applicable).

Unregistered users are not supported except for basic install information.

147

